15 Đề ôn tập kiểm tra học kì 1 Toán Lớp 12 (Có lời giải)

Câu 18. Cho hình nón có độ dài đường sinh bằng 3a và bán kính đáy bằng a . Diện tích xung quanh của hình 
nón đã cho bằng  
A. 12πa² . B. 3πa² . C. 6πa² . D. πa² . 

Câu 28. Cắt khối nón tròn xoay có chiều cao bằng 6 bởi mặt phẳng vuông góc và đi qua trung điểm của trục 
khối nón, thiết diện thu được là hình tròn có diện tích 9π. Thể tích khối nón bằng 
A. 54π . B. 16π . C. 72π . D. 216π . 

pdf 193 trang Minh Uyên 30/06/2023 3160
Bạn đang xem 20 trang mẫu của tài liệu "15 Đề ôn tập kiểm tra học kì 1 Toán Lớp 12 (Có lời giải)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • pdf15_de_on_tap_kiem_tra_hoc_ki_1_toan_lop_12_co_loi_giai.pdf

Nội dung text: 15 Đề ôn tập kiểm tra học kì 1 Toán Lớp 12 (Có lời giải)

  1. Câu 1. Thể tích của khối cầu bán kính r là 4 4 A. r3 . B. r 2 . C. 4 r2 . D. 2 r3 . 3 3 Câu 2. Nghiệm của phương trình log2 ( 3x −= 8) 2 là 4 A. x =−4. B. x =12 . C. x = 4 . D. x =− . 3 Câu 3. Khối trụ tròn xoay có bán kính đáy bằng a và chiều cao bằng 2a. Thể tích khối trụ bằng: 1 2 A. a3 . B. a3 . C. a3 . D. 2 a3 . 3 3 Câu 4. Đồ thị hàm số nào sau đây có 3 điểm cực trị? A. y=2 x42 + 4 x + 1. B. y= x42 +21 x − . C. y= − x42 − x +1. D. y= x42 −21 x − . 1 Câu 5. Tập xác định của hàm số yx= 2 là 1 A. 0;+ ) . B. ;+ . C. . D. (0; + ) . 2 21x − Câu 6. Giá trị lớn nhất của hàm số y = trên đoạn −1;1 là: x + 2 1 A. max y = . B. maxy = 1. −1;1 3 −1;1 1 C. maxy =− 3. D. max y =− . −1;1 −1;1 2 Câu 7. Đồ thị hàm số nào dưới đây có dạng đường cong như hình bên dưới? A. y= − x42 −23 x + . B. y= x3 −33 x + . C. y= − x42 +23 x + . D. y= x42 −23 x + . Câu 8. Cho hàm số fx( ) có bảng biến biên dưới đây. Mệnh đề nào sau đây là sai ? 3
  2. A. Hàm số đã cho nghịch biến trên khoảng (− ;1 − ) . B. Hàm số đã cho nghịch biến trên khoảng (0;1) . C. Hàm số đã cho đồng biến trên khoảng (1; + ) . D. Hàm số đã cho nghịch biến trên khoảng (−−3; 2) . Câu 9. Tập xác định của hàm số yx= log3 là A. . B. (0; + ). C. 0; + ) . D. * . Câu 10. Cho khối trụ có chiều cao bằng 23 và bán kính đáy bằng 2. Thể tích của khối trụ đã cho bằng 83 A.8 . B. 83 . C. . D. 24 . 3 Câu 11. Cho khối lăng trụ có đáy là hình vuông cạnh a và chiều cao bằng 3a . Thể tích của khối lăng trụ đã cho bằng 4 A. a3 . B. 4a3 . C. a3 . D. 3a3 . 3 Câu 12. Giá trị lớn nhất của hàm số f( x) = x +8 − x2 bằng A. 22. B. −22. C.8 . D. 4 . 2 Câu 13. Tập nghiệm của bất phương trình 4xx−2 64 là A. (− ; − 1  3; + ) . B. 3; + ) . C. (− ;1 − . D. −1;3 . Câu 14. Cho hàm số y= f( x) có bảng biến thiên như sau: Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số bằng A. 4 . B. 1. C. 2 . D. 3 . Câu 15. Cho khối cầu thể tích V= 40 a3 ( a ) , bán kính R của khối cầu trên theo a là A. Ra= . B. Ra= 3 3 . C. Ra= 3 2 . D. Ra= 3 4 . Câu 16. Tập nghiệm của bất phương trình log ( x + 2) 0 là 3 A. (−1; + ) . B. (−−2; 1). C. (− ;1 − ) . D. (−2; + ) . 4
  3. Câu 17. Tất cả các giá trị thực của tham số m để hàm số y=2 x32 + 3 mx + 2 mx − 5 không có cực trị là 4 4 4 4 A. 0 m . B. 0 m . C. − m 0 . D. − m 0 . 3 3 3 3 Câu 18. Cho hình nón có độ dài đường sinh bằng 3a và bán kính đáy bằng a . Diện tích xung quanh của hình nón đã cho bằng A. 12 a2 . B. 3 a2 . C. 6 a2 . D. a2 . Câu 19. Cho hàm số y= f( x) có đồ thị như hình vẽ. Số giá trị nguyên của tham số m để đường thẳng ym= cắt đồ thị hàm số đã cho tại ba điểm phân biệt là A.Vô số. B. 3 . C. 0. D. 5 . 2 Câu 20. Đạo hàm của hàm số y=log3 ( 2 x − x + 1) là 21x − 41x − A. . B. . (2xx2 −+ 1) ln 3 (2xx2 −+ 1) ln 3 (4x − 1) ln 3 41x − C. . D. . (21xx2 −+) (21xx2 −+) Câu 21. Cho hình chóp S. ABCD có đáy ABCDlà hình vuông cạnh a . Biết cạnh bên SA= a, SA⊥ ( ABCD). Thể tích của khối chóp S. ABCD bằng 9a3 a3 A. a3 . B. . C. . D. 3a3 . 3 3 Câu 22. Cho hàm số fx( ) liên tục trên và có bảng xét dấu của fx ( ) như sau Số điểm cực trị của hàm số đã cho là A. 3. B. 4 . C. 1. D. 2 . Câu 23. Số giao điểm của đồ thị hàm số y= x42 −41 x + với trục hoành là A.1. B. 3. C. 2. D. 4. 2 3 Câu 24. Tập nghiệm của bất phương trình log8(x+ 3 x − 1) − log 0,5 ( x + 2) là A. −3; + ) . B. 1;+ ) . C. (−2; + ) . D. (− ; − 3  1; + ) . 25x + Câu 25. Biết đường thẳng yx=+1 cắt đồ thị hàm số y = tại hai điểm phân biệt A, B có hoành độ lần x −1 lượt xA, xB . Khi đó giá trị của xxAB. bằng A. 6. B. −2. C. 2. D. −6. Câu 26. Có bao nhiêu tiếp tuyến của đồ thị hàm số y= x3 −32 x + song song với đường thẳng yx=−9 14 ? A. 1. B. 2 . C. 3 . D. 0 . Câu 27. Cho hình chóp S. ABC có tam giác ABC vuông tại B , SA vuông góc với mặt phẳng ( ABC) , SA = 2 , AB =1, BC = 3 . Bán kính R mặt cầu ngoại tiếp hình chóp S. ABC bằng B.1. B. 22. C. 2 . D. 2. 5
  4. Câu 28. Cắt khối nón tròn xoay có chiều cao bằng 6 bởi mặt phẳng vuông góc và đi qua trung điểm của trục khối nón, thiết diện thu được là hình tròn có diện tích 9 . Thể tích khối nón bằng A. 54 . B. 16 . C. 72 . D. 216 . x +1 Câu 29. Cho hàm số y = . Số đường tiệm cận đứng của đồ thị hàm số là xx2 −−45 A. 1. B. 4. C. 2. D. 3. Câu 30. Cho khối lập phương có thể tích bằng 27 ,diện toàn toàn phần của khối lập phương đã cho bằng A. 72 . B. 36 . C. 18. D. 54 . Câu 31. Cho hình hộp ABCD. A B C D . Gọi VV, lần lượt là thể tích của khối hộp ABCD. A B C D và thể tích của khối chóp A . ABC D . Khi đó, V 1 V 2 V 1 V 2 A. = . B. = . C. = . D. = . V 4 V 7 V 3 V 5 4 − x2 Câu 32. Số tiệm cận của đồ thị hàm số y = là x + 3 A. 0 . B. 1. C. 2 . D. 3 . a 6 Câu 33. Cho hình chóp tứ giác đều S. ABCD với O là tâm của đáy, AB== a, SO . Góc giữa cạnh SB và 2 mặt phẳng ()ABCD bằng A. 60. B. 45. C. 90 . D. 30 . Câu 34. Tiếp tuyến của đồ thị hàm số y= x32 −31 x + có hệ số góc nhỏ nhất là đường thẳng A. y = 0. B. yx= −32 − . C. yx= . D. yx= −32 + . Câu 35. Thiết diện qua trục của một hình nón là một tam giác vuông cân và có cạnh góc vuông bằng a 2 . Diện tích xung quanh của một hình nón bằng a3 A. 22 a2 . B. . C. 2a2 . D. 2 a2 . 3 Câu 36. Giá trị nhỏ nhất của hàm số f( x) =−cos 2 x 5cos x bằng 33 A. −4. B. − . C. −5. D. −6. 8 2 Câu 37. Có bao nhiêu giá trị nguyên của tham số m để phương trình 2−x = m có nghiệm? A. 3 . B. 1. C. 0 . D. 2 . Câu 38. Tập nghiệm của bất phương trình lnxx2 + 2ln( 4 4) là: 4 4 4 A. (−1; + ) \ 0. B. −; + . C. −; + \ 0 . D. −; + \ 0 . 5 3 5 xb+ Câu 39. Cho hàm số y = ,(b,, c d ) có đồ thị như hình vẽ bên. cx+ d Mệnh đề nào dưới đây đúng? A. b 0, c 0, d 0 . B. b 0, c 0, d 0 . C. b 0, c 0, d 0. D. b 0, c 0, d 0. x3 Câu 40. Cho hàm số y= −( m −1) x2 + 3( m − 1) x + 1. Số các giá trị 3 nguyên của m để hàm số đồng biến trên khoảng (1; + ) là A . 4 . B. 6 . C. 7 . D. 5 . 6
  5. x x x 1 x A. y = 2 . B. y = . C. y = ( ) . D. y = e . 3 Câu 7. Cho hình chóp S. ABC có đáy là tam giác,diện tích đáy bằng a2 3 và thể tích bằng a3 . Tính chiều cao h của hình chóp đã cho. 3a 3a 3a A. h . B. h . C. 3a . D. . 6 2 3 Câu 8. Tính giá trị của biểu thức K= loga a a với 01 a ta được kết quả là 4 3 3 3 A. K = . B. K = . C. K = . D. K =− . 3 2 4 4 Câu 9. Tổng hoành độ các giao điểm của đồ thị hàm số y= x32 −33 x + và đường thẳng yx= là. A. 3 . B. 2 . C. 4 . D. 0 . Câu 10. Đường cong trong hình sau là đồ thị của hàm số nào? A. y= x42 +23 x − . B. y= x42 −23 x − . C. y= − x42 −23 x + . D. y= − x42 +23 x + . Câu 11. Phương trình log3 ( 3x −= 1) 2 có nghiệm là 3 A. x = . B. x = 3. 10 10 C. x = . D. x = 1. 3 Câu 12. Trong các hàm số sau, hàm số nào đồng biến trên tập xác định của nó? A. y=− xsin2 x. B. yx= cot . C. yx= sin . D. yx=− 3 . Câu 13. Cho hàm số y= f( x) có bảng biến thiên như hình vẽ Phương trình fx( ) = 1 có bao nhiêu nghiệm? A. 3. B. 4. C. 2. D. 5. Câu 14. Mệnh đề nào dưới đây đúng? 56 −−76 67 −−65 33 44 33 22 A. . B. . C. . D. . 44 33 22 33 Câu 15. Một khối chóp có diện tích đáy bằng 32 và thể tích bằng 50 . Tính chiều cao của khối chóp đó. 5 10 A. 10. B. . C. . D. 5 . 3 3 184
  6. Câu 16. Tìm giá trị thực của tham số m để hàm số y= x32 −3 x + mx đạt cực tiểu tại x = 2 . A. m = 0. B. m =−2. C. m =1. D. m = 2 . Câu 17. Cho hình trụ có diện tích xung quanh bằng 3πa2 và bán kính đáy bằng a . Chiều cao của hình trụ đã cho bằng 3 2 A. 3a . B. 2a . C. a . D. a . 2 3 b Câu 18. Cho các số thực a và b thỏa mãn log 5a . 5= log 5 . Khẳng định nào dưới đây đúng? 5 ( ) 5 A. 24ab+=. B. 21ab+=. C. 2ab+= 4 4 . D. ab+=44. 1 Câu 19. Tìm tất cả giá trị thực của tham số m để hàm số y= x32 −2 mx + 4 x − 5 đồng biến trên . 3 A. −11 m . B. −11 m . C. 01 m . D. 01 m . 24x + Câu 20. Gọi M , N là giao điểm của đường thẳng (d) :1 y=+ x và đường cong (Cy) : = . Hoành độ x −1 trung điểm I của đoạn thẳng MN bằng 5 5 A. − . B. 2. C. . D. 1. 2 2 2 Câu 21. Tập nghiệm của bất phương trình log2 ( xx+ 3) 2 là: A. (−4;1) . B. (−4; − 3) ( 0;1) . C. −4; − 3) ( 0;1 . D. −4;1. Câu 22. Tìm tất cả các giá trị thực của tham số m để đường thẳng ym= cắt đồ thị hàm số y= x42 −22 x + tại 4 điểm phân biệt. A. 23 m . B. 12 m . C. m 2. D. m 2 . 2 Câu 23. Tập nghiệm của bất phương trình (0,125)x −5 64 là −1;0;1 −3;3 A.  . B. − 3; 3 . C. (− 3; 3) . D. ( ) . Câu 24. Cho khối lăng trụ đứng ABC. A B C có BB = a , đáy ABC là tam giác vuông cân tại B và BA== BC a. Tính thể tích V của khối lăng trụ đã cho. a3 a3 a3 A. Va= 3 . B. V = . C. V = . D. V = . 3 6 2 Câu 25. Trong các phương trình sau, phương trình nào vô nghiệm? x x A. 4−= 4 0. B. 9+= 1 0. C. log3 ( x += 1) 1. D. log( x += 2) 2. Câu 26. Cắt hình trụ (T ) bằng một mặt phẳng đi qua trục được thiết diện là một hình chữ nhật có diện tích bằng 20cm2 và chu vi bằng 18cm. Biết chiều dài của hình chữ nhật lớn hơn đường kính mặt đáy của hình trụ (T ) . Diện tích toàn phần của hình trụ là A. 30 ( cm2 ) . B. 28 ( cm2 ) . C. 24 ( cm2 ) . D. 26 ( cm2 ) . Câu 27. Đạo hàm của hàm số yx=−ln( 1 2 ) là 2x −2x 1 x A. . B. . C. . D. . x2 −1 x2 −1 x2 −1 1− x2 Câu 28. Số nghiệm của phương trình log22xx− 3 + log 3 − 7 = 2 bằng A. 1. B. 2 . C. 3 . D. 0 . 185
  7. Câu 29. Cho khối cầu có thể tích Va= 4 3 . Tính theo a bán kính R của khối cầu đã cho. A. Ra= 3 3 . B. Ra= 3 2 . C. Ra= 3 4 . D. Ra= . Câu 30. Đặt ln 2 = a , log5 4 = b . Mệnh đề nào dưới đây là đúng? ab+ 2 a 42ab+ a ab+ a 24ab+ a A. ln100 = . B. ln100 = . C. ln100 = . D. ln100 = . b b b b Câu 31. Cho hình chóp tam giác đều S. ABC có cạnh đáy bằng a và chiều cao hình chóp là a 2 . Tính theo a thể tích V của khối chóp . a3 6 a3 6 a3 a3 6 A. V = . B. V = . C. V = . D. V = . 12 4 6 6 Câu 32. Cắt một khối trụ bởi một mặt phẳng qua trục ta được thiết diện là hình chữ nhật ABCDcó cạnh AB và cạnh CD nằm trên hai đáy của khối trụ. Biết BD= a 2 , DAC = 60 . Tính thể tích khối trụ. 36 32 32 32 A. a3 . B. a3 . C. a3 . D. a3 . 16 16 32 48 Câu 33. An có số tiền 1.000.000.000 đồng, dự định gửi tiền tại ngân hàng 9 tháng, lãi suất hàng tháng tại ngân hàng lúc bắt đầu gửi là 0,4%. Lãi gộp vào gốc để tính vào chu kì tiếp theo. Tuy nhiên, khi An gửi được 3 tháng thì do dịch Covid – 19 nên ngân hàng đã giảm lãi suất xuống còn 0,35%/tháng. An gửi tiếp 6 tháng nữa thì rút cả gốc lẫn lãi. Hỏi số tiền thực tế có được, chênh lệch so với dự kiến ban đầu của An gần số nào dưới đây nhất ? A. 3.300.000đ. B. 3.100.000đ. C. 3.000.000đ. D. 3.400.000đ. Câu 34. Tìm tất cả các giá trị thực của tham số m để hàm số y=log( x2 − 2 mx + 4) có tập xác định là . m 2 A. . B. m = 2. m −2 C. m 2. D. −2 m 2. Câu 35. Cho a , b , c là các số dương khác 1. Hình vẽ bên là đồ thị các hàm xx số y= a, y = b , y = logc x . Mệnh đề nào sau đây đúng? A. abc . B. c b a. C. a c b. D. c a b. Câu 36. Cho hình lăng trụ đứng ABC. A B C có đáy ABC là tam giác vuông tại A . Biết AB== AA a , AC= 2 a. Gọi M là trung điểm của AC . Diện tích mặt cầu ngoại tiếp tứ diện MA B C bằng A. 4 a2 . B. 2 a2 . C. 5 a2 . D. 3 a2 . Câu 37. Một hình nón và một hình trụ có cùng chiều cao bằng h và bán kính đường tròn đáy bằng r , hơn nữa h diện tích xung quanh của chúng cũng bằng nhau. Khi đó, tỉ số bằng r 3 1 A. . B. 3. C. . D. 2. 3 2 xx 11 Câu 38. Gọi S là tập hợp các giá trị của tham số m để phương trình −mm +2 + 1 = 0 có nghiệm. 93 Tập \ S có bao nhiêu giá trị nguyên? A. 4 . B. 9 . C. 0 . D. 3 . 186
  8. Câu 39. Cho khối chóp S. ABCD có thể tích bằng 1 và đáy ABCD là hình bình hành. Trên cạnh SC lấy điểm E sao cho SE= 2. EC Tính thể tích V của khối tứ diện SEBD . 1 1 1 2 A. V = . B. V = . C. V = . D. V = . 3 6 12 3 Câu 40. Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh bằng a , SA vuông góc với đáy. Biết SC tạo với mặt phẳng ( ABCD) một góc 45o . Tính thể tích V của khối cầu ngoại tiếp hình chóp 4 1 2 A. Va= π 3 . B. Va= π 3 . C. Va= π 3 . D. Va= π 3 . 3 3 3 3xx++12 .2 Câu 41. Tìm tập nghiệm của bất phương trình −2.3xx − 4.2+1 + 8 0 . 6 3 A. S =− 1;log3 4. B. S = ;log3 4 . C. S =log3 4; +  . D. S = 0;log3 4. 4 Câu 42. Một đồ chơi bằng gỗ có dạng một khối nón và một nửa khối cầu ghép với nhau (hình bên). Đường sinh của khối nón bằng 5cm , đường cao của khối nón là 4cm . Thể tích của đồ chơi bằng A. 30 ( cm3 ) . B. 72 ( cm3 ) . C. 48 ( cm3 ) . D. 54 ( cm3 ) . Câu 43. Phương trình x32−3 x = m + m có sáu nghiệm phân biệt khi và chỉ khi A. m 0. B. m −2 hoặc m 1. C. −10 m . D. −21 m − hoặc 01 m . Câu 44. Cho hình chóp S. ABC có SA=2 a , SB = 3 a , SC = 4 a và ASB= BSC =6000 , ASC = 90 . Tính thể tích V của khối chóp S. ABC . 42a3 22a3 A. V = . B. Va= 223 . C. Va= 3 2 . D. V = . 3 9 Câu 45. Cho khối lập phương (H ) và gọi (B) là khối bát diện đều có các đỉnh là tâm các mặt của . Tỉ số thể tích của và là 1 1 A. . B. . 2 4 1 1 C. . D. . 6 3 x−+ m2 m Câu 46. Cho hàm số fx( ) = . Gọi S là tập hợp chứa tất cả các giá trị x +1 thực của tham số m để giá trị lớn nhất của hàm số g( x) = f( x) trên đoạn 1;2 đạt giá trị nhỏ nhất. Tính tổng các phần tử của tập hợp S . 1 1 A. . B. 1. C. 0. D. − . 4 2 187
  9. Câu 47. Cho hàm số y= f( x) có đồ thị như hình vẽ sau. Tìm m để phương trình f(sin x) = m có đúng hai nghiệm trên đoạn 0;  . A. −43 m − . B. −43 m − . C. m =−4 hoặc m −3 . D. −43 m − . Câu 48. Cho hàm số y= f( x) liên tục, có đạo hàm trên hàm số y y= f ( x) có đồ thị như hình vẽ. Biết f (0) = 2022 . Có bao y=f'(x) nhiêu giá trị nguyên M không vượt quá 2024 để bất phương −cos x -1 1 4 trình f(cos x) + e M nghiệm đúng với mọi x ; ? 2 O x A. 2021. B. 2022 . C. 4 . D.3. Câu 49. Cho hình nón ( N ) có góc ở đỉnh bằng 60o , độ dài đường sinh bằng a . Dãy hình cầu (S1 ), (S2 ), (S3 ), , (Sn ), thỏa mãn: (S1 ) tiếp xúc với mặt đáy và các đường sinh của hình nón ( N ); (S2 ) tiếp xúc ngoài với (S1 ) và tiếp xúc với các đường sinh của hình nón ( N ); (S3 ) tiếp xúc ngoài với (S2 ) và tiếp xúc với các đường sinh của hình nón ( N ) . Tính tổng thể tích các khối cầu (S1 ), (S2 ), (S3 ), , (Sn ), theo a . a3 3 27 a3 3 A. . B. . 52 52 a3 3 93 a3 C. . D. . 48 16 Câu 50. Cho xy, là các số thực dương thỏa mãn log2 ( x+ 2 y) + x( x + 3 y − 1) + y( 2 y − 1) = 0. Khi biểu thức 22 P=+log2022 x 2log 2022 y đạt giá trị lớn nhất, tính giá trị 45xy+ . 2 8 A. 1. B. . C. . D. 3 . 3 9 ___HẾT___ 188
  10. ÑAÙP AÙN ÑEÀ SOÁ 15 1 2 3 4 5 6 7 8 9 10 A B A B A B C C A B 11 12 13 14 15 16 17 18 19 20 C A B D D A C A B D 21 22 23 24 25 26 27 28 29 30 C B C D B B A A A D 31 32 33 34 35 36 37 38 39 40 A B B D B C A B A A 41 42 43 44 45 46 47 48 49 50 D A D B C B A C A A Lôøi giaûi caâu hoûi vaän duïng & vaän duïng cao ñeà soá 15 3xx++12 .2 Câu 41. Tìm tập nghiệm của bất phương trình −2.3xx − 4.2+1 + 8 0 . 6 3 A. S =− 1;log3 4. B. S = ;log3 4 . C. S =log3 4; +  . D. S = 0;log3 4. 4 Hướng dẫn giải: 3xx++12 .2 Ta có: −2.3x − 4.2 x+1 + 8 0 3 x .2 x + 1 − 2.3 x − 4.2 x + 1 + 8 0 6 2xx++11− 2 0 2 − 2 0 32x( x+1 −− 242) ( x + 1 − −− 20) ( 2 x + 1 2340)( x )  3xx− 4 0 3 − 4 0 xx 00  0 x log3 4. xx log33 4 log 4 Vậy tập nghiệm của bất phương trình là S = 0;log3 4. Chọn D. Câu 42. Một đồ chơi bằng gỗ có dạng một khối nón và một nửa khối cầu ghép với nhau (hình bên). Đường sinh của khối nón bằng 5cm , đường cao của khối nón là 4cm . Thể tích của đồ chơi bằng A. 30 ( cm3 ) . B. 72 ( cm3 ) . C. 48 ( cm3 ) . D. 54 ( cm3 ) . Hướng dẫn giải: 189
  11. Theo giả thiết: l==5 cm , h 4 cm . Bán kính đáy của khối nón là: r= l2 − h 2 =5 2 − 4 2 = 3 cm . 112 2 3 Do đó, thể tích của phần khối nón là: V1 = r h = .3 .4 = 12 ( cm ) . 33 Nửa khối cầu có bán kính bằng bán kính đáy của khối nón là r = 3. Suy ra thể tích của nửa khối cầu 1 43 2 3 3 là: Vr2 =. = . .3 = 18 ( cm ) . 2 3 3 3 Vậy thể tích của đồ chơi là VVV=12 + = 30 ( cm ) . Chọn A. Câu 43. Phương trình x32−3 x = m + m có sáu nghiệm phân biệt khi và chỉ khi A. m 0. B. m −2 hoặc m 1. C. −10 m . D. −21 m − hoặc 01 m . Hướng dẫn giải: 3 2 x =1 Xét hàm số f( x) =− x3 x trên . Ta có: f ( x) =3 x − 3; f( x) = 0 . x =−1 Bảng biến thiên cho các hàm số y= f( x) và y= f( x) : Từ bảng biến thiên (hình dáng đồ thị) của , ta suy ra bảng biến thiên (hình dáng đồ thị) của y= f( x) theo hai bước làm sau: • Bước 1: Giữ nguyên phần đồ thị phía trên Ox (kể cả điểm thuộc Ox), ta được (C1 ) . • Bước 2: Lấy đối xứng phần đồ thị nằm dưới Ox qua Ox, ta được (C2 ) . Hợp hai đồ thị , chính là đồ thị của hàm số (xem hàng cuối bảng biến thiên). Phương trình đã cho có sáu nghiệm phân biệt khi và chỉ khi đường thẳng y=+ m2 m (ngang) cắt đồ m2 + m 0 m − 1  m 0 thị hàm tại sáu điểm phân biệt m −2; − 1  0;1 . 2 ( ) ( ) mm+ 2 −21 m Chọn D. Câu 44. Cho hình chóp S. ABC có SA=2 a , SB = 3 a , SC = 4 a và ASB= BSC =6000 , ASC = 90 . Tính thể tích V của khối chóp S. ABC . 190
  12. 42a3 22a3 A. V = . B. Va= 223 . C. Va= 3 2 . D. V = . 3 9 Hướng dẫn giải: ☺ Cách giải 1: Lấy điểm MN, lần lượt thuộc cạnh SB, SC sao cho SM== SN2. a Suy ra hai tam giác SAM, SMN đều cạnh 2,a tam giác SAN vuông cân tại S nên AN= 2 a 2. Trong tam giác AMN có AM2+= MN 2 AN 2 và AM= MN nên tam giác AMN vuông cân tại M. Gọi H là trung điểm AN, suy ra H là tâm đường tròn ngoại tiếp tam giác AMN. Vì SA= SM = SN SH ⊥ ( AMN ) . Tam giác vuông cân tại S nên đường cao SH= a 2. Thể tích khối chóp S.AMN là: 1 1 1 2a3 2 V=. SH . S = . a 2. .2 a .2 a = . S. AMN3 AMN 3 2 3 3 VS. AMN SM SN2 1 1 2 a 2 3 Ta có: =. = . = VS ABC = 3 V S AMN = 3. = 2 a 2. Chọn B. VS. ABC SB SC 3 2 3 3 ☺ Cách giải 2:  Ghi nhớ (công thức trắc nghiệm): Nếu tứ diện SABC có SA= a,,,,, SB = b SC = c ASB = BSC =  ASC =  thì thể tích tứ diện abc được tính theo công thức V =1 + 2cos .cos  .cos  − cos2 − cos 2  − cos 2  . SABC 6 2a .3 a .4 a Ta có: Va=1 + 2cos600 .cos60 0 .cos90 0 − cos 2 60 0 − cos 2 60 0 − cos 2 90 0 = 2 3 2 . SABC 6 Câu 45. Cho khối lập phương (H ) và gọi (B) là khối bát diện đều có các đỉnh là tâm các mặt của . Tỉ số thể tích của và là 1 1 1 1 A. . B. . C. . D. . 2 4 6 3 Hướng dẫn giải: Gọi thể tích của khối lập phương và khối bát diện đều lần lượt là VH và VB . Gọi aa20( ) là độ dài cạnh của khối 3 lập phương H , ta có: VaH = 2 2 . 1 Ta có: VVB= 2. O. MNPQ = 2. .d( O ,( MNPQ)) . SMNPQ 3 11 a3 2 ==OO . S . a 2. a2 hay V = . 33MNPQ B 3 191
  13. 1 Lưu ý : MNPQ là hình vuông có cạnh bằng đường chéo của mặt hình lập phương nên 2 2 MN= NP = PQ = MQ = a SMNPQ = a ). V a3 21 1 Khi đó: B = . = .Chọn C. 3 VH 3 22a 6 x−+ m2 m Câu 46. Cho hàm số fx( ) = . Gọi S là tập hợp chứa tất cả các giá trị thực của tham số m để giá trị x +1 lớn nhất của hàm số g( x) = f( x) trên đoạn 1;2 đạt giá trị nhỏ nhất. Tính tổng các phần tử của tập hợp S . 1 1 A. . B. 1. C. 0. D. − . 4 2 Hướng dẫn giải: 22 −m + m +12 − m + m + Ta có: maxg( x) = max f( x) = max  ; = M . 1;2  1;2 23  −mm2 + +1 M 2 2 21M − m + m + Vì nên 5M − m22 + m + 1 + m − m − 2 . mm2 −−2 2 32Mmm − − M 3 Áp dụng bất đẳng thức giá trị tuyệt đối dạng: a+ b a + b , ta được: 1 5M − m2 +++ m 1 m 2 −− − m 2 m 2 +++ m 1 m 2 −−= m 2 1 M . 5 22 −m + m +12 m − m − 1 1 ==5−+ 165 5 165 Do vậy: min M = ; khi đó 2 3 5 mm =  = . 5 22 10 10 (−m + m +1)( m − m − 2) 0 5−+ 165 5 165 Vậy tổng các giá trị của là: +=1. Chọn B. 10 10 Câu 47. Cho hàm số y= f( x) có đồ thị như hình vẽ sau. Tìm m để phương trình f(sin x) = m có đúng hai nghiệm trên đoạn 0;  . 192
  14. A. −43 m − . B. −43 m − . C. m =−4 hoặc m −3 . D. −43 m − . Hướng dẫn giải: Đặt tx= sin với x 0;  . Bảng biến thiên của hàm số trên 0;  : x 0 2 t 0 1 t 0 0 Phương trình ban đầu tương đương với f( t) = m , t 0;1. Khi đó, phương trình f(sin x) = m có đúng hai nghiệm trên đoạn Phương trình f( t) = m có đúng một nghiệm t 0;1) −43 m − . Vậy −43 m − là tập hợp giá trị của tham số m cần tìm. Chọn A. Câu 48. Cho hàm số y= f( x) liên tục, có đạo hàm trên hàm số y= f ( x) có đồ thị như hình vẽ. Biết f (0) = 2022 . Có bao nhiêu giá trị nguyên M không vượt quá 2024 để bất phương trình −cos x f(cos x) + e M nghiệm đúng với mọi x ; ? 2 y y=f'(x) -1 1 4 O x A. 2021. B. 2022 . C. 4 . D.3 . Hướng dẫn giải: −−cos xt Đặt tx= cos với xt ; ( − 1;0) f(cos x) e + M f( t) − e M . 2 Xét hàm số g( t) =− f( t) e−t . Ta có: g ( t) = f( t) +e−t 0,  t ( − 1;0) . Suy ra gt( ) đồng biến trên (−1;0) . Do đó g( t) g(0) = f ( 0) − e−0 = 2022 − 1 = 2021. Yêu cầu bài toán M 2021 và MM , 2024 nên M 2021;2022;2023;2024 . Vậy có 4 giá trị nguyên của M thỏa mãn. Chọn C. o Câu 49. Cho hình nón ( N ) có góc ở đỉnh bằng 60 , độ dài đường sinh bằng a . Dãy hình cầu (S1 ), (S2 ), (S3 ), , (Sn ), thỏa mãn: (S1 ) tiếp xúc với mặt đáy và các đường sinh của hình nón ( N ); (S2 ) tiếp xúc ngoài với (S1 ) và tiếp xúc với các đường sinh của hình nón ( N ); (S3 ) tiếp xúc ngoài với (S2 ) 193
  15. và tiếp xúc với các đường sinh của hình nón ( N ) . Tính tổng thể tích các khối cầu (S1 ), (S2 ), (S3 ), , (Sn ), theo a . a3 3 27 a3 3 a3 3 93 a3 A. . B. . C. . D. . 52 52 48 16 Hướng dẫn giải: Xét khối nón chứa hai mặt cầu (S1 ) và (S2 ) như hình bên để tìm mối liên hệ giữa bán kính rr12, của hai mặt cầu này. Gọi II12, lần lượt là tâm của mặt cầu và ; H là trung điểm của AB . Vì SAB đều nên theo tính chất trọng 1 1aa 3 3 tâm: r= SH =. = . 1 3 3 2 6 Kẻ các đường I11 M⊥ SA tại M1 , I22 M⊥ SA tại M2 . ο IM22 Xét SI22 M có sin 30 = SI2 =22 I 2 M 2 = r 2 . SI2 Khi đó ta có SH= SI22 + I E + EH 3r1 = 3 r 2 + 2 r 1 =rr123 . Chứng minh tương tự ta có rr23= 3 , ., rrnn= 3 +1 . a 3 Do đó dãy bán kính r , r , , r ,. lập thành một cấp số nhân lùi vô hạn với r = và công bội 1 2 n 1 6 1 q = . Suy ra dãy thể tích của các khối cầu (S ) , (S ) , ,(S ) , lập thành một cấp số nhân lùi vô 3 1 2 n 3 4 a 3 3 1 hạn với Va== . 3 và công bội q = . 1 1 3 6 54 27 V 3 Vậy tổng thể tích của các khối cầu (SSS),( ) , ,( ) , là: Va==1 3 . Chọn A. 12 n 1− q 52 194
  16. Câu 50. Cho xy, là các số thực dương thỏa mãn log2 ( x+ 2 y) + x( x + 3 y − 1) + y( 2 y − 1) = 0. Khi biểu thức 22 P=+log2022 x 2log 2022 y đạt giá trị lớn nhất, tính giá trị 45xy+ . 2 8 A. 1. B. . C. . D. 3 . 3 9 Hướng dẫn giải: 2 Ta có: log22( xyxxy+++−+ 2) ( 3 1) yy( 2 −= 1) 0 log( xyxyyxyxy +++ 2) ( 2 ) −+−+=( 2) ( ) 0 (x++ 2 y )( x y ) log + (x + 2 y )( x + y ) = ( x + y ) 2 ()xy+ log22 (xyxyxyxy + 2 )( + ) + ( + 2 )( + ) = log ( xyxy + ) + ( + ) (1) 1 Xét hàm số: f( x )= log x + x , x (0; + ) ; ta có f ( x )= + 1 0,  x (0; + ) . Do vậy hàm số 2 xln 2 fx()đồng biến trên (0;+ ). Vì vậy: (1) fxyxy( (2)() + +=) fxy( + +) (2)() xyxyxy +=+ += xy 21 (do xy,0 ). 3 2 x++ y y 1 Khi đó: P=log2022 x + 2log 2022 y = log 2022( xy) = log 2022 x . y . y log 2022 = log 2022 . 3 27 AM− GM 1 xy= 1 22 Vậy PMax= log 2022 ; khi đó xy = = . Suy ra: 4xy+= 5 1. Chọn A. 27 xy+=21 3 195