6 Đề kiểm tra học kì 1 Toán Lớp 12 - Năm học 2022-2023 (Có đáp án)

Câu 23: Một ô tô đang chạy với vận tốc 10m/s  thì người lái xe đạp phanh, từ thời điểm đó ô tô chuyển động chậm dần đều với vận tốc v(t)=-5t+10 (m/s)  trong đó t  là khoảng thời gian tính bằng giây kể từ lúc đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn ô tô còn di chuyển được bao nhiêu mét?
A.  2m    B.  0,2m.    C.  20m. D.  10m.
Câu 45: Trong không gian với hệ tọa độ Oxyz , cho hình hộp  ABCD.A'B'C'D'. Biết tọa độ các đỉnh  A(-3;2;1), C(4;2;0), B'(-2;1;1;),  D'(3;5;4). Tìm tọa độ điểm   của hình hộp.
A. A'(–3; –3; 3) B. A'(–3; –3; –3). C. A'(–3; 3; 1). D. A'(–3; 3; 3)..

 

doc 30 trang Minh Uyên 24/06/2023 6560
Bạn đang xem 20 trang mẫu của tài liệu "6 Đề kiểm tra học kì 1 Toán Lớp 12 - Năm học 2022-2023 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • doc6_de_kiem_tra_hoc_ki_1_toan_lop_12_nam_hoc_2022_2023_co_dap.doc

Nội dung text: 6 Đề kiểm tra học kì 1 Toán Lớp 12 - Năm học 2022-2023 (Có đáp án)

  1. ĐỀ SỐ 1 SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ KIỂM TRA HỌC KỲ II LỚP 12 THPT TRƯỜNG THPT . NĂM HỌC 2022 - 2023 Môn: TOÁN 12 ĐỀ CHÍNH THỨC Thời gian làm bài: 90 phút. (Không kể thời gian giao đề) Đề kiểm tra có 04 trang 2 Câu 1: Cho I sin2 xcos xdx và u sin x . Mệnh đề nào dưới đây đúng?. 0 1 1 0 1 A. .I u2du B. . IC. .2 udu D. . I u2du I u2du 0 0 1 0 Câu 2: Cho biết F x là một nguyên hàm của hàm số f x . Tìm .I 2 f x 1 dx A. .I B.2F . xC. . x D.C . I 2xF x 1 C I 2F x 1 C I 2xF x x C 2 Câu 3: Phương trình z 3z 9 0 có 2 nghiệm phức z1, z2 . Tính .S z1z2 z1 z2 A. .S 6 B. . S 6 C. . D.S . 12 S 12 Câu 4: Tính mô đun của số phức z 4 3i . A. . z 7 B. . z 7C. . zD. .5 z 25 Câu 5: Gọi M là điểm biểu diễn của số phức z trong mặt phẳng tọa độ, N là điểm đối xứng của M qua Oy (M , N không thuộc các trục tọa độ). Số phức w có điểm biểu diễn lên mặt phẳng tọa độ là N . Mệnh đề nào sau đây đúng? A. .w z B. . w zC. . D.w . z w z Câu 6: Tính mô đun của số phức nghịch đảo của số phức z 1 2i 2 . 1 1 1 A. . B. . 5 C. . D. . 5 25 5 Câu 7: Cho số phức z thỏa 1 i z 3 i , tìm phần ảo của .z A. . 2i B. . 2i C. . 2 D. . 2 Câu 8: Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng P : x y 2z 1 0 và đường thẳng x 1 y z 1 d : . Tính góc giữa đường thẳng d và mặt phẳng . P 1 2 1 A. .6 0o B. . 30o C. . 150o D. . 120o Câu 9: Trong không gian với hệ tọa độ Oxyz , cho điểm A 2;1;1 và đường thẳng x 1 y 2 z 3 d : . Tính khoảng cách từ A đến đường thẳng d . 1 2 2 3 5 A. . 5 B. . C. . 2 5 D. . 3 5 2 5 7 7 Câu 10: Nếu f x dx 3 và f x dx 9 thì f x dx bằng bao nhiêu? 2 5 2 A. 3. B. 12. C. 6. D. 6.
  2. Câu 11: Kí hiệu S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y y f x , trục hoành, đường thẳng x a, x b (như hình bên). Hỏi khẳng định nào dưới đây là khẳng định đúng ? a c c b c b O b x A. S f x dx f x dx B. . S f x dx f x dx y f x a c a c c b b C. S f x dx f x dx . D. .S f x dx a c a x 1 y 2 z Câu 12: Trong không gian với hệ tọa độ Oxyz , cho đường thẳng d : , vectơ nào dưới 1 3 2 đây là vectơ chỉ phương của đường thẳng d ? A. .u 1; B.3; . 2 C. . u D. 1 ;. 3;2 u 1;3; 2 u 1;3;2 Câu 13: Trong không gian với hệ tọa độ Oxyz, cho hai điểm A 2;3; 1 , B 1;2;4 . Phương trình đường thẳng nào được cho dưới đây không phải là phương trình đường thẳng AB . x 2 t x 1 t A. . y 3 t B. . y 2 t z 1 5t z 4 5t x 2 y 3 z 1 x 1 y 2 z 4 C. . D. . 1 1 5 1 1 5 Câu 14: Trong không gian với hệ tọa độ Oxyz , cho hai điểm M 2;1; 2 và N 4; 5;1 . Tính độ dài đoạn thẳng MN . A. .4 9 B. . 7 C. . 41 D. . 7 Câu 15: Trong không gian với hệ tọa độ Oxyz , cho các điểm A 1;0;3 , B 2;3; 4 , C 3;1;2 . Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành. A. .D 6;2; 3B. . C. D. 2;4; 5 D. . D 4;2;9 D 4; 2;9 Câu 16: Tính .S 1 i i2 i2017 i2018 A. .S i B. . S 1 C.i . D.S . 1 i S i 2 Câu 17: Tính tích phân .I 22018x dx 0 24036 1 24036 1 24036 24036 1 A. .I B. . C. . I D. . I I 2018ln 2 2018 2018ln 2 ln 2 Câu 18: Trong không gian với hệ tọa độ Oxyz , cho 3 điểm A 1;0;0 ; B 0; 2;0 ; C 0;0;3 . Phương trình nào dưới đây là phương trình của mặt phẳng ABC ? x y z x y z x y z x y z A. . B. . 1 C. . D. . 1 1 1 3 2 1 3 1 2 2 1 3 1 2 3 Câu 19: Cho hai hàm số y f1 x và y f2 x liên tục trên đoạn a;b và có đồ thị như hình vẽ bên. Gọi S là hình phẳng giới hạn bởi hai đồ thị trên và các đường thẳng x a , x b . Thể tích V của vật thể tròn xoay tạo thành khi quay S quanh trục Ox được tính bởi công thức nào sau đây? b b A. .V f x f xB. d.x V f 2 x f 2 x dx 1 2 1 2 a a
  3. b b 2 C. .V f 2 x f 2 xD. d .x V f x f x dx 1 2 1 2 a a Câu 20: Tìm nguyên hàm của hàm số f x cos 2x . 1 A. . f x dx 2sin 2x B.C . f x dx sin 2x C 2 1 C. . f x dx sin 2xD. C. f x dx 2sin 2x C 2 9 5 Câu 21: Biết f x là hàm số liên tục trên ¡ và f x dx 9 . Khi đó tính I f 3x 6 dx . 0 2 A. .I 27 B. . 0 C. . I 24D. . I 3 Câu 22: Trong không gian với hệ tọa độ Oxyz , cho ba điểm A 2;3;1 , B 2;1;0 , C 3; 1;1 . Tìm tất cả các điểm D sao cho ABCD là hình thang có đáy AD và SABCD 3S ABC . D 8;7; 1 D 8; 7;1 A. .D 12;B. 1 ;. 3 C. . D. . D 8;7; 1 D 12; 1;3 D 12;1; 3 Câu 23: Một ô tô đang chạy với vận tốc 10m / s thì người lái xe đạp phanh, từ thời điểm đó ô tô chuyển động chậm dần đều với vận tốc v(t) 5t 10(m / s) trong đó t là khoảng thời gian tính bằng giây kể từ lúc đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn ô tô còn di chuyển được bao nhiêu mét? A. 2m B. .0 ,2m C. . 20m D. . 10m Câu 24: Cho hình phẳng H giới hạn bởi đồ thị y 2x x2 và trục hoành. Tính thể tích V của vật thể tròn xoay sinh ra khi cho H quay quanh trục .Ox 16 16 4 4 A. .V B. . V C. . D. V. V 15 15 3 3 2 Câu 25: Tìm nguyên hàm F(x) của hàm số f (x) 6x sin 3x, biết F(0)  3 cos3x 2 cos3x A. F(x) 3x2  B. F(x) 3x2 1. 3 3 3 cos3x cos3x C. F(x) 3x2 1. D. F(x) 3x2 1. 3 3 Câu 26: Trong không gian với hệ tọa độ Oxyz , cho mặt cầu S : x2 y2 z2 1 và mặt phẳng P : x 2y 2z 1 0 . Tìm bán kính r đường tròn giao tuyến của S và . P 1 2 1 2 2 A. .r B. . r C. . r D. . r 2 2 3 3 Câu 27: Trong không gian với hệ tọa độ Oxyz , tính khoảng cách giữa hai mặt phẳng song song : x 2y 2z 4 0 và  : x 2y 2z 7 0 . A. .0 B. 1. C. 1. D. 3 . Câu 28: Trong không gian với hệ tọa độ Oxyz , cho điểm M 1; 3; 4 , đường thẳng x 2 y 5 z 2 d : và mặt phẳng P : 2x z 2 0 . Viết phương trình đường thẳng đi qua M , 3 5 1 vuông góc với d và song song với P . x 1 y 3 z 4 x 1 y 3 z 4 A. . : B. . : 1 1 2 1 1 2
  4. Câu 40. Cắt một khối trụ tròn xoay bởi một mặt phẳng qua trục của nó, ta được thiết diện là một hình vuông có cạnh bằng 2a. Diện tích toàn phần của khối trụ là: 2 2 2 2 A. Stp 4 a B. Stp 6 a . C. Stp 8 a . D. Stp 10 a . Câu 41. Trong không gian Oxyz, cho đường thẳng đi qua M 0;2; 3 và có véc tơ chỉ phương a 4; 3;1 . Phương trình tham số của đường thẳng là: x 4t x 4t x 4 x 4t A. y 2 3t B. y 2 3t C. y 3 2t D. y 2 3t z 3 t z 3 t z 1 3t z 3 t Câu 42. Trong không gian Oxyz, cho mặt cầu (S) x2 y2 z2 6x 4y 2z 2 0 . Tọa độ tâm I và bán kính R của (S) là: A. I(3; -2; 1) và R = 16. B. I(-3; 2; - 1) và R = 16. C. I(-3; 2; -1) và R = 4. D. I(3; - 2; 1) và R = 4. Câu 43. Trong không gian Oxyz, mặt phẳng đi qua ba điểm A(1; 1; 1), B(4; 3; 2), C(5; 2; 1) có phương trình là: A. x – 4y +5z +2 = 0 B. x - 4y + 5z -2 = 0 C. x + 4y +5z+2 = 0 D. x + 4y +5z -2 = 0 Câu 44. Trong không gian Oxyz. Cho điểm M(1 ; 2; 0) và mp : x + 2y - 2 z + 1 = 0. Khoảng cách từ M đến là: A. 1 B. 2 C. 3 D. 4 Câu 45. Trong không gian Oxyz, cho điểm A(3;-2;1), B(4; 5; -2) và mặt phẳng (Q): 2x y 3z 5 0. Mặt phẳng (α) đi qua A,B và đồng thời vuông góc với mặt phẳng (Q) là: A.18x – 3y - 13 z -16 = 0 B. 18x – 3y - 13 z + 16 = 0 C. 18x + 3y + 13z - 61= 0 D. 18x + 3y + 13 z + 61 = 0. x 1 t Câu 46. Trong không gian Oxyz. Cho đường thẳng (d ) : y 2 t và mặt phẳng : z 1 2t x 3y z 1 0. Trong các mệnh đề sau tìm mệnh đề đúng: A. d / / B. d cắt C. d  D. d  Câu 47. Trong không gian Oxyz. Cho mặt phẳng ( ) : 3x 2y z 6 0 và điểm A(2; -1; 0). Tọa độ điểm A’ đối xứng với A qua mp( ) là: A. A' 1;1; 1 B. A' 4;3;2 C. A' 4;3; 2 D. A' 4;3; 2 x 6 4t Câu 48. Trong không gian Oxyz . Cho điểm A(1; 1; 1) và đường thẳng d : y 2 t . z 1 2t Hình chiếu vuông góc của điểm A trên đường thẳng d là điểm H có tọa độ là: A. H(2; -3; -1) B. H(2; 3; 1) C. H(-1; 3; 1) D. H(2; -3; 1). Câu 49. Trong không gian Oxyz, cho mặt phẳng ( ) : x 2y z 4 0 và đường thẳng x 1 y z 2 (d) : . Phương trình đường thẳng ∆ nằm trong mặt phẳng ( ) , đồng thời cắt và 2 1 3 vuông góc với đường thẳng (d) là: x 1 y 1 z 1 x 1 y 3 z 1 A. B. 5 1 3 5 1 3 x 1 y 1 z 1 x 1 y 1 z 1 C. D. 5 1 2 5 2 3
  5. 2 2 2 Câu 50. Trong không gian Oxyz, cho mặt cầu (S): x 1 y 1 z 2 25 và đường thẳng x t : y 1 t . z m Tìm cácgiá trị của m để cắt (S) tại hai điểm M, N sao cho MN .6 62 62 A. m 4 62 B. m 2 31 C. m 2 D. m 2 . 2 2 Hết ĐÁP ÁN Câu 1 2 3 4 5 6 7 8 9 10 Đáp án A B C C B B D C D A 11 12 13 14 15 16 17 18 19 20 ĐA A D C D A C A C D B 21 22 23 24 25 26 27 28 29 30 ĐA A C B B D C A C B D 31 32 33 34 35 36 37 38 39 40 ĐA A D B C C B D B D B 41 42 43 44 45 46 47 48 49 50 ĐA B C B B C A D D A C
  6. ĐỀ SỐ 5 SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ KIỂM TRA HỌC KỲ II LỚP 12 THPT TRƯỜNG THPT . NĂM HỌC 2022 - 2023 Môn: TOÁN 12 ĐỀ CHÍNH THỨC Thời gian làm bài: 90 phút. (Không kể thời gian giao đề) Đề kiểm tra có 04 trang 4 3 lnx Câu 1: Tích phân dx bằng: 1 x A. .2 ln 2B. 3. ln 2 C. . 3 D.ln .2 ln 4 3 ln 2 ln 2 2 ln 2 3 ln 2 Câu 2: Công thức nguyên hàm nào sau đây là công thức SAI: 1 dx 1 dx tan x C ln 3x 2 C A. cos2 x B. 2 3x 3 3 5x 1 3 5x C. e dx e C 1 5 sin 2x dx cos 2x C D. 2 2 2 x t Câu 3: Trong không gian với hệ tọa độ Oxyz cho đường thẳng d : y 1 2t và mặt phẳng z 1 t (P) : 2x y z 1 0. Tìm tọa độ giao điểm M của đường thẳng d và mặt phẳng (P). A. M =( 1;-1;-2) B. M =( 2;-1;-4) C. M = (-1;-1;2) D. M =( -1;4;-3) Câu 4: Cho số phức z thỏa điều kiện z (2 i)z 3 5i .Tìm số phức z . A. z = 3+2i B. z =2-3i C. z = 2 + 3i D. z = 3-2i Câu 5: Cho số phức z (2 i)2 . Điểm M biểu diễn số phức z có tọa độ là. A.M ( 3;4) B. M ( 3; 4) C. M (3; 4) D.M (4; 3) Câu 6: Từ một quả cầu bằng thủy tinh có đường kính 20cm, người ta cắt bỏ một chỏm cầu có đường kính mặt cắt là 12cm để lấy phần còn lại làm chậu nuôi cá cảnh. Hỏi thể tích nước tối đa mà bể cá này có thể chứa là bao nhiêu lít (làm tròn kết quả đến hàng đơn vị)? A. 3 lít. B. 2 lít . C. 4 lít . D. 5 lít. 2 Câu 7: Tích phân I sin3 x.cosx dx bằng: 0 4 1 1 A. I . B. I C. I 1 . D. I . 4 4 . 4 Câu 8: Trong mặt phẳng tọa độ, hãy tìm số phức z có môđun lớn nhất, biết số phức z thỏa mãn điều kiện z 2 4i 5 . A. z=1-2i B. z=3-6i. C. z=1+2i D. z=3+6i
  7. Câu 9: Các số x, y ¡ thỏa đẳng thức x y 3x 2y i 4x 5 x y 4 i là. x 1 x 1 x 1 x 1 A. B. C. D. y 2 y 2 y 2 y 2 Câu 10: Câu24 Tìm môđun của số phức z biết: z(2 i) 13i 1. 5 34 34 A. z 34 B. z 34 C. z D. z 3 3 Câu 11: Trong mặt phẳng Oxy , hai điểm M và N y là là hai điểm biểu diễn của hai số phức z , z (hình 1 2 M 3 vẽ bên). Tính z1 z2 . A . z1 z2 3 2i N B. z1 z2 1 2i 1 C. z z 5 2i x 1 2 -2 O 1 D. z1 z2 3 2i Câu 12: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : 4x 3y 5 0 và điểm A 1; 3;2 . Tính khoảng cách d từ điểm A đến mặt phẳng (P), 18 18 5 18 A. d 0 B. d C. .d D. d 25 5 5 Câu 13: Biết ex sinx cosx dx m e 3 n m,n Q . Giá trị của m2 n2 bằng 0 17 8 9 25 A. . B. . C. . D. . 4 3 2 6 1 Câu 14: Tính I x 2 x2 dx . 0 2 2 1 2 2 1 2 2 1 2 2 A. I B. I C. I D I 3 3 3 3 Câu 15: Biết F(x) là một nguyên hàm của hàm số f x 3x2 2x 1 và F 1 2 . Trong các khẳng định sau, đâu là khẳng định đúng? A. F x x3 x2 x 1 B. F x x3 x2 x 2 C. F x x3 x2 x 1 D. F x 6x 4 Câu 16: Tìm z biết rằng z có phần ảo bằng hai lần phần thực và điểm biểu diễn z nằm trên đường thẳng d : x y 9 0 . A. z 3 B. z 5 C. z 2 3 D. z 3 5 Câu 17: Trong không gian Oxyz, cho hai mặt phẳng P : x 2y 2z 5 0,(Q) : 3x 2mz 1 0 (m là tham số). Tìm m để mặt phẳng (P) vuông góc với mặt phẳng (Q). 3 1 3 A. m B. .m C. m 0 D. m 4 2 4 Câu 18: Diện tích hình phẳng giới hạn bởi đường thẳng y x 2 , đường cong y x2 và trục hoành là: 1 9 7 5 A. B. C. D. 3 2 6 6 Câu 19: Nguyên hàm của hàmsố f (x) 1 x x2 là: x2 x3 x2 x3 A. . 1 2x B.C . C. . x D.x2 . x3 C x C C 2 3 2 3
  8. Câu 20: Trong không gian Oxyz, cho các điểm A 1;2;3 ,B 2;1;4 . Tìm tọa độ của điểm M thuộc mặt phẳng Oxz sao cho ba điểm A, B, M thẳng hàng. A. .M 5B.; 5;0 M 5 C.;0 ; 5 M 5 D.;0 ;5 M 5;5;0 Câu 21: Cho hình phẳng  giới hạn bởi các đường y x2 4,Ox,Oy, x 2 . Quay  quanh Ox ta được khối tròn xoay có thể tích bằng 14 14 2 2 A. B. 14 2 C. D. 3 3 3 Câu 22: Số phức z thỏa mãn đẳng thức 5 z i z 1 2 i bằng. A. z 1 i B. z 1 i C. z 2 i D. z 1 i 3 3 5i Câu 23: Phần thực a và phần ảo b của số phức z là. 1 3i 9 2 9 2 9 2 9 1 A. a ; b B. a ; b C. a ; b D. a ; b 5 5 5 5 5 5 5 5 Câu 24: Hình phẳng giới hạn bởi đường cong y 3x2 mx m 0 , hai đường thẳng x 1; x 2có diện tích bằng 10 . Khi đó giá trị m bằng. A. m 7 B. m 1 C. m 2 D. m 3 Câu 25: Trong không gian với hệ tọa độ Oxyz . Tìm tọa độ trọng tâm G của tam giác ABC , biết A (1;2; 1), B ( 3;0;3),C (5;1; 2) . 1 1 A. G (3;1;2) B. G ( ;1;0) C. G (1;1;0) D. G (1; 1; ) 3 3 2 Câu 26: Tích phân I= (2sin x cos 2x)dx có giá trị bằng: 0 A. - 1 B. 1 C. – 2 D. 2 Câu 27: Trong mặt phẳng Oxy cho 2 số phức z a bi , z ' c di có điểm biểu diễn trên mặt phẳng lần lượt là M, N. Giả sử MN cắt trục Oy tại C sao cho MC = 3CN. Sự liên hệ giữa a, b, c,d là? A. d 2 3b2 B. b2 3d 2 C. a2 9c2 D. .c2 9a2 Câu 28: Tìm số phức liên hợp z của số phức: z 1 5i. A. z 5 i B. z 1 5i C. z 1 5i D. z 1 5i Câu 29: Trong không gian Oxyz, cho mặt cầu S : x2 y2 z2 4x 6y 2z 2 0 . Tìm tọa độ tâm I và bán kính R của mặt cầu (S). A. I 2;3; 1 và R 4 B. I 2; 3;1 và R 16 C. I 2;3; 1 và R 16 D. I 2; 3;1 và R 4 Câu 30: Số nghiệm của phương trình z4 3z2 4 0 trên tập số phức là: A. 4 B. 2 C. 1 D. Vô nghiệm. 2 Câu 31: Giả sử z1 , z2 là hai nghiệm của phương trình z 2z 3 0 trên tâp số phức .Giá trị biểu thức 2 2 P z1 z2 2z1z2 là. A. 4 B. -11 C. 11 D. 9 Câu 32:Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) đi qua điểm A = (1;1;-3) và nhận véctơ n 1; 2;1 làm véctơ pháp tuyến. Khi đó phương trình của mặt phẳng (P) là. A. (P) : x 2y z 2 0 B. (P) : x 2y z 4 0 C. (P) : x y 3z 4 0 D. (P) : x y 3z 2 0 Câu 33: Trong không gian Oxyz , cho bốn điểm A 1;2;0 , B 3;0;1 , C 2; 5;5 và D 2; 11;3 . Gọi P là mặt phẳng cách đều hai đường thẳng AB và CD . Tính khoảng cách từ điểm K 1;2;3 đến mặt phẳng P đó.
  9. 41 5 41 5 41 5 41 5 A. . B. . C. . D. . 60 15 30 5 1 Câu 34: Biết x 1 ln x 1 dx a ln b với a,b ¤ . Giá trị của ab bằng 0 A. . B. 5 C. 4 D. Câu 35: Cho hai số phức z1 2 i 2; z2 2 i 2 . Khi đó z1 .z2 bằng. A. 6 B. 6i C. 6 i D. - 6 Câu 36: Một quả banh được ném theo phương thẳng đứng từ một vị trí A lên phía trên với vận tốc ban đầu là 128 ft / s 1ft 30,48cm . Bỏ qua sức cản của không khí, biết gia tốc trọng trường là 32 ft / s2 . Độ cao tối đa của quả banh đạt được so với vị trí A là A. 156,5 ft. B. 192 ft. C. .2 56 ft D. 128 ft. Câu 37: Cho các số phức z1 1 i, z2 4 i , z3 4 3i có các điểm biểu diễn trên mặt phẳng tọa độ lần lượt là A,B,C.Khẳng định nào sau đây đúng. A. Tam giác ABC đều. B. Tam giác ABC vuông cân tại A. C. Tam giác ABC vuông tại B. D. Tam giác ABC vuông tại A. Câu 38: Trong không gian với hệ tọa độ Oxyz , mặt cầu (S) có tâm I(1;- 2;1) , đường kính bằng 4 có phương trình là : 2 2 2 2 2 2 A. x 1 y 2 z 1 4 B. x 1 y 2 z 1 16 2 2 2 2 2 2 C. x 1 y 2 z 1 4 D. x 1 y 2 z 1 16 1 Câu 39: Tích phân I = (x 1)exdx a b.e với . Tính I a.b . 0 A. .I 1 B. . I 2 C. . I D. 4 . I 0 Câu 40: Trong không gian với hệ tọa độ Oxyz .Mặt phẳng qua điểm B(1;1;2) và song song với mặt phẳng (Q): 2x-y+3z+4=0 có phương trình là: A. 2x y 3z 3 0 B. 2x y 3z 7 0 C. 2x y 3z 9 0 D. 2x y 3z 7 0 Câu 41: Trong không gian với hệ tọa độ Oxyz , mặt cầu (S) có tâm là góc tọa độ và đi qua I(1;2;0) có phương trình là : 2 A. x 1 (y 2)2 z2 25 B. x2 y2 z2 5 2 C. x 1 (y 2)2 z2 5 D. x2 y2 z2 25 Câu 42: Diện tích hình phẳng giới hạn bởi đồ thị hàm số y 2 x x2 9 và trục hoành là 81 A. . B. 81 C. . 64 D. 49. 2 Câu 43: Trong không gian với hệ tọa độ Oxyz cho ba véctơ a (1;2;1),b (3; 2;0),c 5i j . Tìm tọa độ của véctơ u 2a b c . A. u (10;3;2) B. u (0;1;2) C. u (10;1;2) D. .u (0;3;2) Câu 44: Trong không gian với hệ tọa độ Oxyz, cho hai điểm A 1;2; 4 và B 1; 1;0 ,đường thẳng d đi qua hai điểm A và B có phương trinh tham số là. x 2 t x 1 2t x 1 t x 1 2t A. d : y 3 2t B. d : y 2 3t C. d : y 1 2t D. d : y 2 3t z 4 4t z 4 4t z 4t z 4 4t Câu 45: Tập hợp các điểm biểu diễn số phức thỏa z 1 z 3 2i là. A. Đường thẳng :x y 3 0 B. Hình tròn tâm I 2; 2 , bán kính r 2 C. Đường tròn tâm I 2;2 , bán kính r 2 D. Đường thẳng: x y 3 0
  10.  Câu 46: Trong không gian Oxyz, cho các điểm A 1;2; 3 ,B 0;1; 2 . Tìm tọa độ của vecto AB     A. AB 1; 1;1 B. AB 3; 3; 3 C. AB 1;1; 3 D. AB 3; 3;3 Câu47: Trong không gian Oxyz , cho mặt cầu S : x2 y2 z2 2m 4 x 2m 2 y 4m 2 z 6m 12 0 , m là tham số. Biết rằng khi m thay đổi thì mặt cầu S luôn chứa một đường tròn cố định. Tìm tọa độ tâm I của đường tròn đó. A. I 1;2;1 B. I 1;2;0 . C. I 2;1;2 . D.I 1;4; 3 . Câu 48: Trong không gian Oxyz , cho bốn điểm A 4;1;1 , B 5; 2;1 , C 2;0;2 và D 3;3;2 . M là điểm thay đổi trên mặt phẳng ABC . Tìm giá trị nhỏ nhất của diện tích tam giác ODM (O là gốc tọa độ). 418 418 4 418 2 418 A. . B. C. . D. . 38 19 19 19 Câu 49: : Trong không gian với hệ tọa độ Oxyz .Phương trình chính tắc của đường thẳng đi qua điểm M 1;1; 2 và vuông góc với mp  : 2x y 3z 19 0 là: x 1 y 1 z 2 x 1 y 1 z 2 A. B. 2 1 3 2 1 3 x 2 y 1 z 3 x 2 y 1 z 3 C. D. 1 1 2 1 1 2 4 Câu 50: Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y , y x 5 là x 15 15 15 15 A. 6ln 2 B. . 8ln 2 C. . D. . 4ln 2 2ln 2 2 2 2 2 HẾT
  11. ĐỀ SỐ 6 0001: Nguyên hàm của hàm số f x cos 5x 2 là: 1 A. F x sin 5x 2 C B. F x 5sin 5x 2 C 5 1 C. F x sin 5x 2 C D. F x 5sin 5x 2 C 5 0002: Trong các khẳng định sau, khẳng định nào sai ? 1 A. 0dx C (C là hằng số). B. dx ln x C (C là hằng số , x 0). x x 1 C. x dx C (C là hằng số). D. dx x C (C là hằng số). 1 m 0003: Cho 2x 6 dx 7 . Tìm m 0 A. mhoặc 1 m 7 B. m 1 hoặc m 7 C. m 1hoặc m 7 D. m 1hoặc m 7 2 0004: Tích phân I x2.ln xdx có giá trị bằng: 1 7 8 7 8 7 A. 8ln 2 B. ln 2 C. 24ln 2 7 D. ln 2 3 3 9 3 3 4 0005: Tính tích phân I sin2 x.cos2 xdx 0 A. I B. I C. I D. I 16 32 64 128 ln3 0006: Tính tích phân I xexdx 0 A. I 3ln3 3 B. I 3ln3 2 C. I 2 3ln3 D. I 3 3ln3 0007: Tính diện tích hình phẳng giởi hạn bởi đồ thị hàm số y x3 x và đồ thị hàm số y x2 x 1 1 1 1 A. B. C. D. 16 12 8 4 t2 4 0008: Một vật chuyển động với vận tốc v t 1,2 m / s . Tính quãng đường S vật đó đi được t 3 trong 20 giây (làm tròn kết quả đến hàng đơn vị). A. 190 (m). B. 191 (m). C. 190,5 (m). D. 190,4 (m). 0009: Diện tích tam giác được cắt ra bởi các trục tọa độ và tiếp tuyến của đồ thị y ln xtại giao điểm của đồ thị hàm số với trục Ox là: 2 1 2 1 A. S B. S C. S D. S 3 4 5 2 e2x 0010: Nguyên hàm của hàm số y f x là: ex 1 A. I x ln x C B. I ex 1 ln ex 1 C C. I x ln x C D. I ex ln ex 1 C
  12. 0011: Cho số phức z 1 4 i 3 . Tìm phần thực và phần ảo của số phức z . A. Phần thực bằng 11 và phần ảo bằng 4i B. Phần thực bằng 11 và phần ảo bằng 4 C. Phần thực bằng 11 và phần ảo bằng 4i D. Phần thực bằng 11 và phần ảo bằng 4 0012: Tìm mệnh đề sai trong các mệnh đề sau: A. Số phức zđược a biểu bi diễn bằng điểm M trong mặt phẳng phức Oxy. B. Số phức z a bi có môđun là a2 b2 a 0 C. Số phức z a bi 0 b 0 D. Số phức z a bi có số phức đối z ' a bi 0013: Cho hai số phức z a bi và z' a' b'i . Số phức z.z’ có phần thực là: A. a a' B. aa' C. aa' bb' D. 2bb' 2 0014: Phần thực của số phức z 2 3i A. -7 B. 6 2 C. 2 D. 3 2 0015: Cho số phức z thỏa z 1 2i 3 4i 2 i . Khi đó, số phức z là: A. z 25 B. z 5i C. z 25 50i D. z 5 10i 0016: Tập hợp các điểm trong mặt phẳng Oxy biểu diễn các số phức z thỏa mãn z 1 i 2 là: A. Đường tròn tâm I 1;1 , bán kính 2 B. Đường tròn tâm I 1; 1 , bán kính 2 C. Đường tròn tâmI 1; 1 , bán kính 4 D. Đường thẳng x y 2 . 2 0017: Cho số phức z thỏa mãn 1 2i z z 4i 20 . Mô đun của z là: A. z 3 B. z 4 C. z 5 D. z 6 0018: Trong không gian Oxyz, cho điểm M 1;1; 2 và mặt phẳng : x y 2z 3 . Viết phương trình mặt cầu (S) có tâm M tiếp xúc với mặt phẳng . 36 A. S : x2 y2 z2 2x 2y 4z 0 B. 6 35 S : x2 y2 z2 2x 2y 4z 0 6 35 C. S : x2 y2 z2 2x 2y 4z 0 D. 6 14 S : x2 y2 z2 2x 2y 4z 0 3 0019: Trong không gian Oxyz, cho A 2;0; 1 , B 1; 2;3 ,C 0;1;2 . Tọa độ hình chiếu vuông góc của gốc toạ độ O lên mặt phẳng (ABC) là điểm H, khi đó H là: 1 1 1 1 1 1 3 1 A. H 1; ; B. H 1; ; C. H 1; ; D. H 1; ; 2 2 3 2 2 3 2 2  0020: Trong không gian O,i, j,k , cho OI 2i 3 j 2k và mặt phẳng (P) có phương trình x 2y 2z 9 0 . Phương trình mặt cầu (S) có tâm I và tiếp xúc với mặt phẳng (P) là: 2 2 2 2 2 2 A. x 2 y 3 z 2 9 B. x 2 y 3 z 2 9 2 2 2 2 2 2 C. D. x 2 y 3 z 2 9 x 2 y 3 z 2 9 0021: Trong không gian Oxyz, cho hai điểm A 1;1;1 và B 1;3; 5 . Viết phương trình mặt phẳng trung trực của AB. A. y 3z 4 0 B. y 3z 8 0 C. y 2z 6 0 D. y 2z 2 0
  13. 0022: Trong không gian Oxyz, cho mặt cầu S : x2 y2 z2 4x 6y m 0 và đường thẳng x y 1 z 1 d : . Tìm m để (d) cắt (S) tại hai điểm M, N sao cho độ dài MN bằng 8. 2 1 2 A. m 24 B. m 8 C. m 16 D. m 12 x 1 y 1 z 0023: Trong không gian Oxyz, cho điểm M 2; 1;1 và đường thẳng : . Tìm tọa độ 2 1 2 điểm K hình chiếu vuông góc của điểm M trên đường thẳng . 17 13 2 17 13 8 17 13 8 A. B.K ; ; K ; ; C. K ; ; D. 12 12 3 9 9 9 6 6 6 17 13 8 K ; ; . 3 3 3 0024: Cho điểm M(–3; 2; 4), gọi A, B, C lần lượt là hình chiếu của M trên Ox, Oy, Oz. Mặt phẳng song song với mp(ABC) có phương trình là: A. 4x – 6y –3z – 12 = 0. B. 3x – 6y –4z + 12 = 0. C. 6x – 4y –3z – 12 = 0. D. 4x – 6y –3z + 12 = 0. x 1 t x 2 t ' 0025: Trong không gian với hệ tọa độ Oxyz, cho d1 : y 2 t ; d2 : y 1 t ' . Vị trí tương đối của z 2 2t z 1 hai đường thẳng là A. Cắt nhau. B. Chéo nhau. C. Song song. D. Trùng nhau. 0026: Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD có các điểm A(0; 1; 0), B(0; 1; 1), C(2; 1; 1), D(1; 2; 1). Thể tích của tứ diện ABCD bằng 1 1 2 4 A. B. C. D. 6 3 3 3 0027: Trong không gian với hệ tọa độ Oxyz, gọi (P) là mặt phẳng đi qua G(1; 2; –1) và cắt Ox, Oy, Oz lần lượt tại A, B, C sao cho G là trọng tâm của tam giác ABC. Viết phương trình mặt phẳng (P). A. (P). x + 2y – z – 4 = 0 B. (P). 2x + y – 2z – 2 = 0 C. (P). x + 2y – z – 2 = 0 D. (P). 2x + y – 2z – 6 = 0 0028: Trong không gian Oxyz, cho các điểm A(1;0;0), B(-2;0;3), M(0;0;1) và N(0;3;1). Mặt phẳng (P) đi qua các điểm M, N sao cho khoảng cách từ điểm B đến (P) gấp hai lần khoảng cách từ điểm A đến (P). Có bao nhiêu mặt phẳng (P) thỏa mãn đề bài? A. Có hai mặt phẳng (P). B. Không có mặt phẳng (P) nào. C. Có vô số mặt phẳng (P). D. Chỉ có một mặt phẳng (P). 0029: Trong các số phức z thỏa điều kiện : z 3i i.z 3 10 , có 2 số phức z có mô đun nhỏ nhất. Tính tổng của 2 số phức đó. A. - 3. B. 4 + 4i C. 4 – 4i D. 0 5 2 x 2 1 0030: Biết I dx 4 aln 2 bln5 , với a,b là các số nguyên. Tính S a b. 1 x A. S 11. B. S 5. C. S 3. D. S 9.