Chuyên đề bồi dưỡng học sinh giỏi Toán Lớp 12 - Dãy số (Có đáp án)

Bài 11. Bài 3. Cho phương trình x² -⍺x-1=0 với  ⍺ là số nguyên dương. Gọi β  là nghiệm dương của phương trình. Dãy số (xn)  được xác định như sau xo= ⍺=x(n+1)=[βxn], n=0,1,2,3... . Chứng minh rằng tồn tại vô hạn số tự nhiên n sao cho xn  chia hết cho ⍺ .
docx 44 trang Minh Uyên 06/04/2023 8460
Bạn đang xem 20 trang mẫu của tài liệu "Chuyên đề bồi dưỡng học sinh giỏi Toán Lớp 12 - Dãy số (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • docxchuyen_de_boi_duong_hoc_sinh_gioi_toan_lop_12_day_so_co_dap.docx

Nội dung text: Chuyên đề bồi dưỡng học sinh giỏi Toán Lớp 12 - Dãy số (Có đáp án)

  1. CHUYÊN ĐỀ DÃY SỐ BỒI DƯỠNG HỌC SINH GIỎI TOÁN 1.1. DỰ ĐOÁN SỐ HẠNG TỔNG QUÁT VÀ CHỨNG MINH BẰNG QUY NẠP. u1 11 Bài 1. Cho dãy số un xác định bởi : . Xác định số hạng tổng quát của dãy un 1 10un 1 9n,n N đã cho. Hướng dẫn giải Ta có:. u1 11 10 1 u2 10.11 1 9 102 100 2 . u3 10.102 1 9.2 1003 1000 3 n Dự đoán: un 10 n 1 . Chứng minh theo quy nạp ta có. 1 k u1 11 10 1, công thức 1 đúng với n 1. Giả sử công thức 1 đúng với n k ta có uk 10 k . k k 1 Ta có: uk 1 10 10 k 1 9k 10 k 1 . Công thức 1 đúng với n k 1. n Vậyun 10 n , n N u1 2 Bài 2. Cho dãy số (un ) biết . Xác định số hạng tổng quát của dãy. un 3un 1 1,n 2 Hướng dẫn giải 1 3 1 1 u 3u 1 u 3u u 3(u )(1) . n n 1 n 2 n 1 2 n 2 n 1 2 1 1 5 Đặt v u v u . n n 2 1 1 2 2 (1) vn 3vn 1,n 2 . Dãy (vn ) là cấp số nhân với công bội là q 3. 5 Nên v v .qn 1 .3n 1 . n 1 2 1 5 1 Do đó u v 3n 1 ,n 1,2, n n 2 2 2 3 n 4 * Bài 3. Cho dãy số un xác định bởi u1 1;un 1 un 2 ,n N .Tìm công thức số hạng 2 n 3n 2 tổng quát un của dãy số theo n . HƯỚNG DẪN GIẢI
  2. Với mọi n ¥ * , ta có. n 4 2 3 2un 1 3(un ) 2un 1 3(un ) (n 1)(n 2) n 2 n 1 . 3 3 3 3 3 2(un 1 ) 3(un ) un 1 (un ). n 2 n 1 n 2 2 n 1 . 3 3 1 Dãy số (vn ),vn un là cấp số nhân có công bội q và v1 . n 1 2 2 n 1 n 1 3 1 * 3 1 3 * vn . ,n ¥ un ,n ¥ . 2 2 n 1 2 2 Bài 4. Cho hàm số f : Z Z thỏa mãn đồng thời các điều kiện:. (1) f n 1 f n , n Z . (2) f f n n 2000 , n Z . a/Chứng minh: f n 1 f n , n Z b/Tìm biểu thức f n . HƯỚNG DẪN GIẢI Câu a. Vì f n Z nên từ giả thiết (1) ta được: f n 1 f n 1, n Z Kết hợp giả thiết (2) ta được n Z . n 2001 n 1 2000 f f n 1 f f n 1 n 2001 do đó: f n 1 f n 1, n Z . Câu b. f n f 1 n –1,n Z f f 1  f 1 f 1 –1,. Suyra:1 2000 2 f 1 –1 f 1 1001 f n n 1000,n Z . Thử lại thỏa các điều kiện, nên f n n 1000,n Z Bài 5. a)Xác định ba số hạng đầu của một cấp số cộng, biết tổng của chúng bằng 9 và tổng các bình phương của chúng là 125. u 16 1 b)Cho dãy số u có . Tìm số hạng tổng quát u . n 15 n.un 1 n un 1 14 , n 1 n 1 Hướng dẫn giải a)Xác định ba số hạng đầu của một cấp số cộng, biết tổng của chúng bằng 9 và tổng các bình phương của chúng là 125.
  3. Gọi d là công sai, số hạng thứ 2 là a. Khi đó 3 số hạng đầu của csc là a d,a,a d . a d a a d 9 Theo giả thiết ta có hệ: . 2 2 2 a d a a d 125 3a 9 2 2 3a 2d 125 . a 3 d 7 Vậy có 2 cấp số thỏa mãn có 3 số hạng đầu là: -4;3;10 hoặc 10;3;-4. u 16 1 b)Cho dãy số u có . Tìm số hạng tổng quát u . n 15 n.un 1 n un 1 14 , n 1 n 1 15 n.u 1 Ta có: u 14 n u 14 n 1 15 n.u 1 . n 1 n 1 n 1 n n 1 un 1 15nun 14n 1 (1). Đặt vn nun v1 16 . (1) trở thành: vn 1 15vn 14n 1 vn 1 n 1 15 vn n (2). Đặt w n vn n w1 15 . n (2) trở thành: wn 1 15wn w n là csn có w1 15,q 15 w n 15 . 15n n Từ đó ta có: u . n n Bài 6. Cho dãy số un xác định bởi : u1 1;u2 4;un 2 7un 1 un 2,n ¥ *. Chứng minh : un là số chính phương với mọi n nguyên dương. Hướng dẫn giải Ta có u1 1;u2 4;u3 25 . 2 3 18 123 Đặt u v thì v ;v ;v . n n 5 1 5 2 5 3 5 2 2 2 Khi đó un 2 7un 1 un 2,n ¥ * vn 2 7 vn 1 vn 2,n ¥ * 5 5 5 vn 2 7vn 1 vn ,n ¥ *. 2 2 2 2 Ta có : vn 2.vn vn 1 (7vn 1 vn ).vn vn 1 vn 1(7vn vn 1) vn vn 1vn 1 vn . 9 Suy ra : v .v v2 v v v2 L v v v2 ;n ¥ * . n 2 n n 1 n 1 n 1 n 3 1 2 5
  4. 2 2 2 2 9 2 4 2 4 4 9 Suy ra : un 2 . un un 1 un 2un un 2 un un 1 un 1 5 5 5 5 5 25 5 25 5 2 4 9 u u 7u 2 u2 u u u u2 2u 1 (u 1)2 ;n ¥ *. n 2 n 5 n 1 n 1 5 n 1 5 n 2 n n 1 n 1 n 1 2 Từ hệ thức un 2un (un 1 1) ;n ¥ * và u1;u2 là các số chính phương suy ra un là số chính phương với mọi n nguyên dương. Bài 7. Cho dãy số a tăng, a 0 n 1,2,3, và 0 . Xét dãy số x xác định bởi nn 1 n nn 1 n ai 1 ai xn . Chứng minh rằng tồn tại lim xn .  n i 1 ai 1ai Hướng dẫn giải Dễ dàng thấy rằng dãy x tăng ngặt. nn 1 Trường hợp 1. Nếu 1. a a 1 1 1 1 1 i 1 i x vậy dãy x . 1 n nn 1 ai 1ai ai ai 1ai ai ai 1 a1 bị chặn trên do đó tồn tại lim xn . n Trường hợp 2. Nếu 0 1. ai 1 ai 1 1 1 1 * thật vậy * ai 1 ai 1 ai ai 1 ai . ai 1ai ai ai 1 ai 1 ai 1 ai 1 . Ta chứng minh ( ). ai 1 ai Xét hàm số f x x Trên đoạn ai ;ai 1  rõ ràng hàm số thoả mãn điều kiện của định lí Lagrăng nên tồn ' ai 1 ai 1 ai 1 ai 1 ai 1 ai tại số c ai ;ai 1 thoả mãn f c c ai 1 đpcm. ai 1 ai ai 1 ai ai 1 ai Từ đó ta có. 1 xn dãy xn bị chặn trên do đó tồn tại lim xn . n 1 n a1 Bài 8. Cho dãy số xn được xác định bởi : x4 1 và. xn 1 xn 1 n 2 2 n 3 3 n 4 L n 2 1, với mọi n 4 x Tính giới hạn lim n . . n n4 Hướng dẫn giải Ta có: 1 n 2 2 n 3 3 n 4 n 2 .1. n 1 1 2 n 1 2 3 n 1 3 n 2 n 1 n 2 .
  5. 2 2 Nếu cả a1 và a2 đều chính phương, giả sử a1 a , a2 b ,. suy ra b2 a6 2019 b a3 b a3 2019 . Hơn nữa khi phân tích 2019 thành tích chỉ có 2 cách 2019 1.2019 3.673 . b a3 1 b 1010 Trường hợp 1: , vô lí do 1009 không là lập phương. 3 3 b a 2019 a 1009 b a3 3 b 338 Trường hợp 2: , vô lí do 335 không là lập phương. 3 3 b a 673 a 335 Vậy điều giả sử sai, nghĩa là dãy trên có nhiều nhất 1 số chính phương. un N um n um un {0;1} Bài 9. Cho dãy un thỏa mãn các điều kiện sau : u2 0 . Tìm u2013 . u 0 3 u9999 3333 Hướng dẫn giải Ta có : um n um un  ( {0;1}) . Bằng quy nạp ta chứng minh được u u u u , với mọi n ,n , ,n . n1 n2 nk n1 n2 nk 1 2 k Ta có: u2 u1 u1 u1 0. u3 u2 u1  0  u3 1. Ta chứng minh rằng nếu n 3333 thì u3n n (1). Thật vậy:. Với n 1 thì (1) đúng. Ta có u3n n.u3 n,n . Giả sử, tồn tại n 3333, mà u n u u u u n 1, điều này chứng tỏ, với mọi 0 3n0 0 3(n0 1) 3n0 3 3n0 3 0 n n0 thì u3n n . Điều này mâu thuẫn với u9999 3333 . Vậy, với n 3333 thì u3n n Do đó u2013 671. 17 1 2 Bài 10. Cho dãy số xn xác định bởi: x1 5; x2 ; xn 1 xn .xn 1 2xn 4 . Tìm n chẵn thỏa mãn n N * 2 4 vàxn  3 là lập phương của 1 số tự nhiên. Hướng dẫn giải Nhận xét thấy :.
  6. 21 1 1 4 22 1 1 4 x1 2 1 1 ; x2 2 2 1 ;. 22 1 22 1 2n 1 1 4 Khi đó, giả sử : xn 2 n 1 n k;k N * 22 1 2k 1 4 Cần chứng minh: xk 1 2 k .(1) thật vậy ta có. 22 1 1 2 1 2k 1 1 4 2k 2 1 4 2 2k 1 1 4 xk 1 xk xk 1 2xk 4 (2 k 1 )(2 k 2 ) 2(2 k 1 ) 4 . 4 4 22 1 22 1 22 1 2k 1 4 = 2 k suy ra (1) đúng. 22 1 n 1 4 x 22 1 n N * n 2n 1 1 2 . 2n 1 1 Khi đó xn  3 2 3 , giả sử tồn tại n chẵn để xn  3là lập phương của 1 số tự nhiên:. n 1 Khi đó 22 1 3 c3 . Mặt khác n chẵn suy ra n 1 lẻ suy ra 2n 1 13 khi đó đặt. n 1 22 1 23k 23k 3 c3 c 2k c2 c.2k 22k 3 mà c2 c.2k 22k c 2k nên:. c 2k 1;c2 c.2k 22k 3 (2). Giải hệ (2) ta được hệ không có nghiệm nguyên với mọi k 0 suy ra không tồn tại n chẵn. Vậy không tồn tại n chẵn để xn  3 là lập phương của một số tự nhiên. Bài 11. Cho dãy số un được xác định như sau: u0 0, u1 1, un 2 2un 1 un , n 0,1,2, Chứng minh 2014 2014 rằng 2 un khi và chỉ khi 2 n . Hướng dẫn giải 1 n n Công thức tổng quát u 1 2 1 2 . n 2 2 n n Đặt 1 2 a, 1 2 b ab 1 n . 1 1 2 2 Ta có un a b , u2n a b un a b . 2 2 2 2 n n Đặt Sn a b 1 2 1 2 . Khi đó ta được dãy Sn được xác định như sau: S1 2, S2 6, Sn 2 2Sn 1 Sn , n 1,2, Do S1  2 mod 4 , S2  2 mod 4 nên bằng quy nạp ta được: Sn  2 mod 4 hay a b  2 mod 4 a b 2t, t,2 1. Do đó u2n 2un .t, t,2 1. Giả sử n 2k.t, t,2 1 u u 2k.u .A , trong đó u , A đều lẻ. n 2k.t t k t k
  7. k k Từ đẳng thức này ta được 2 un khi và chỉ khi 2 n . x1 1 Bài 12. Cho dãy số thực xn được xác định như sau: 1 . Chứng minh rằng: x x ,n 1 n 1 n 2xn 25x625  625 ( kí hiệu x là phần nguyên của số thực x ). Hướng dẫn giải 1 1 1 Ta chứng minh rằng: n n x n H ,n 1, với H 1 L . n 8 n n 2 n 2 2 1 2 2 2 xn 1 xn 2 1, x1 1 quy nạp xn n .Với n 1 đúng giả sử đúng đến n . Tức là xn n . Từ đó suy ra. 4xn 2 1 xn 1 n 1 2 n 1 nxn n . 4xn 1 n 1 1 1 n 1 1 x2 x2 1 L x2 n 1 n n n 1 2 1  2  4xn 1 k 1 4xk 4 k 1 k 2 1 1 1 n Hn n Hn nxn n Hn . 4 8 n 8 Việc tiếp theo ta chứng minh H625 8. Ta có BĐT Hn 1 ln n thật vậy,. 1 1 1 Xét hàm số f x ln x 1 ln x ln 1 x 0 . x 1 x x 1 1 1 f x 0 ,x 0 hàm số f x giảm trên khoảng. x x 1 x 1 2 1 0; f x 0,x 0 , ta suy ra ln x 1 ln x * áp dụng. x 1 1 1 1 L 1 ln 2 ln1 ln 3 ln 2 L ln 625 ln 624 1 ln 625 8 . 2 625 1 Từ đó: 625 625 x 625 H 626 25x  625. 625 8 625 625 2. MỘT SỐ DẠNG TOÁN LIÊN QUAN ĐẾN TÍNH CHẤT CỦA DÃY SỐ. Bài 1. Cho cấp số cộng un với n là số nguyên dương thoã mãn u2013 2013;u2014 2014. Tính tổng: 1 1 1 S . u1u2 u2u3 u2013u2014 Hướng dẫn giải Dễ dàng chứng minh được số hạng tổng quát của cấp số cộng un là un n . Khi đó.
  8. 1 1 1 1 1 1 S u1u2 u2u3 u2013u2014 1.2 2.3 2013 2014 1 1 1 1 1 1 1006 503 2 3 3 4 2013 2014 2014 1007 . x0 a Bài 2. Cho dãy số thực xn được xác định bởi. n ¥ . Tìm tất cả các giá trị của a x 2x2 1 n 1 n . để xn 0 với mọi số tự nhiên n . Hướng dẫn giải Giả sử xn 0 với n ¥ . 2 Từ x 2x2 1 0 có x 0 . n 2 n 1 2 n 1 2 2 2 2 1 Lại từ 2x2 1 0 có x 1 x ,n ¥ . 2 n 2 n 2 n 4 1 3 1 Suy ra x và x 1,n ¥ . n 2 4 n 2 1 1 1 1 1 3 1 Từ đó x 2x2 1 2 x2 2 x . x x ,n ¥ . n 1 2 n 2 n 4 n 2 n 2 2 n 2 Áp dụng liên tiếp bất đẳng thức này, ta có:. 2 n n 1 1 2 1 2 1 2 1 2 a x0 x1 x2 xn ,n ¥ . 2 2 3 2 3 2 3 2 3 n 2 1 1 Mà lim 0 nên phải có a 0 a . n 3 2 2 1 1 Thử lại với a thì x 0,n . 2 n 2 1 Vậy a là giá trị duy nhất cần tìm. 2 x0 20; x1 30 Bài 3. Cho dãy số xn xác định bởi . Tìm n để xn 1.xn 1 là số chính xn 2 3xn 1 xn ,n ¥ phương. Hướng dẫn giải Từ công thức truy hồi của xn ta có.
  9. n ¥ , x2 x2 3x x x2 x x 3x x2 x x n 1 n n 1 n n 1 n n n 1 n 1 n 2 n và x2 x2 3x x x x 3x x2 x2 x x n 1 n n 1 n n 1 n 1 n n n n 1 n 1 2 2 2 Suy ra x xn 2 xn x xn 1xn 1 x x0 x2 500 n 1 n 1 . x2 x2 3x x 500 n 1 n n 1 n x2 x2 3x x 500 n 1 n n 1 n 2 x x x x 500 n 1 n n 1 n Vậy xn 1xn 500 là số chính phương. Giả sử n là số thỏa mãn xn 1xn 500 là số chính phương. 2 2 Đặt xn 1xn 500 b , xn 1xn 1 a ,a,b ¥ ,a b . Ta có a2 b2 501 a b a b 1.501 3.167 . Khi đó ta tìm được a = 201, b=1 thì xn 1xn 12600 n 2 . 7224 Với a = 85, b =82 thì x x  n . n 1 n 5 Vậy n = 2 thì xn 1.xn 1 là số chính phương. u1 2 Bài 4. Dãy số un xác định như sau: 2 . Chứng minh rằng un 1 un un 1, n ¥ *. 1 2016 1 1 1 1 . 22015  22016 k 1 2 uk 2 Hướng dẫn giải 2 2 Ta có: un 1 – un un –2un 1 un –1 . (1). Do u1 2 u2 – u1 1 u2 u1 . Từ đó bằng phép quy nạp ta suy ra un là dãy đơn điệu tăng thực sự, và un nhận giá trị nguyên dương lớn hơn hoặc bằng 2 với mọi n 1,2, Ta viết lại điều kiện truy hồi xác định dãy số dưới dạng sau đây:. 2 un 1 –1 un –un un un –1 (2). 1 1 1 1 1 1 1 Từ đó dẫn đến: , (3) Bây giờ từ (3), ta có:. un 1 1 un (un 1) un 1 un un un 1 un 1 1 n 1 n 1 1 1 1 . (4) .   k 1 uk k 1 uk 1 uk 1 1 uk 1 1 Từ (4) suy ra bất đẳng thức cần chứng minh tương đương với. 1 1 1 n 1 n 1 1 1 22 u 1 22 (5) . 2n 1 2n n 1 2 un 1 1 2
  10. (ở đây n 2016 ). Ta sẽ chứng minh (5) đúng với mọi n . Khi đó nó sẽ đúng với n 2016 . Do un nguyên dương với mọi n , (5) tương đương. 2n 1 2n 2 1 un 1 1 2 . (6). Xét khi n k 1. Theo (2), ta có: uk 2 –1 uk 1 uk 1 –1 . Vì thế theo giả thiết quy nạp suy ra:. k k k k k 1 u 1 22 (22 1) 22 .22 22 k 2 . 2k 1 2k 1 2k 1 2k 1 2k uk 2 1 (2 1).(2 1 1) 2 .2 2 Như thế với n k 1, ta thu được:. 2k 2k 1 2 uk 2 1 2 k k 1 22 1 u 1 22 . (8) k 2 . Từ (8) suy ra (6) đúng với mọi n 2,3, Vì vậy (5) đúng n 2016 . Ta có điều phải chứng minh!. 2 an 5an 10 Bài 5. Cho dãy (an )n 1 : a1 1; an 1 n 1. 5 an a) Chứng minh dãy (an ) hội tụ và tính lim an . a a a 5 5 b) Chứng minh 1 2 n n 1. n 2 Hướng dẫn giải a) Bằng phương pháp chứng minh qui nạp ta có: 1 a 3 n . n 2 5 5 x2 5x 10 10 Đặt A và xét hàm f (x) x(x 5) . 2 5 x 5 x 10 3 1 Suy ra f '(x) 1 0x 1; , như vậy f (x) nghịch biến trên đoạn ;1 . 2 5 x 2 2 a1 a3 a5 a2k 1 A lim a2k 1 b A Dẫn đến . a2 a4 a6 a2k A lim a2k c A c2 5c 10 b 5 c 5 5 Kết hợp công thức xác định dãy ta được: b c . b2 5b 10 2 c 5 b 5 5 Vậy lim a . n 2
  11. 5 5 b) Nhận xét: t 1; thì t f (t) 5 5 . 2 Dẫn đến a2k 1 a2k 5 5 k 1. 5 5 a a a a 2k (1). 1 2 2k 1 2k 2 Như vậy bất đẳng thức đúng với n 2k . 5 5 Trường hợp n 2k 1, chú ý a , kết hợp với (1) thu được:. 2k 1 2 5 5 a a a a a (2k 1) . 1 2 2k 1 2k 2k 1 2 Vậy bất đẳng thức được chứng minh. u 1 1 Bài 6. Cho dãy số un như sau u2 2 . * nun 2 3n 1 un 1 2 n 1 un 3,n ¥ n * a) Chứng minh un 2 3n,n ¥ . n 1 b) Đặt Sn uk . Chứng minh rằng nếu n là số nguyên tố và n > 2 thì Sn chia hết cho n. k 1 Hướng dẫn giải 1 a) Với n 1, u1 2 3.1 1. n 2 , u 22 3.2 2 1 . k k 1 Giả sử uk 2 3k;uk 1 2 3 k 1 . k 2 * Chứng minh uk 2 2 3 k 2 ,k ¥ . Ta có. ku 3k 1 u 2 k 1 u 3 k 2 k 1 k . ku 3k 1 2k 1 3 k 1 2 k 1 2k 3k 3 k 2 . k 2 uk 2 2 3 k 2 . Vậy u 2k 2 3 k 2 ,k ¥ *. k 2 . n 1 b) Đặt Sn uk . Chứng minh rằng nếu n là số nguyên tố và n 2 thì Sn chia hết cho n . k 1 n 1 2 n 1 Ta có: Sn uk 2 2 2 3 1 2 (n 1) k 1 .
  12. n 1 1 2 (n 1)n n 1 (n 1)n Sn 2. 3. 2 2 1 3 1 2 2 2 . n 1 Với n là số nguyên tố 2 1 chia hết cho n . (n 1)n Do n là số nguyên tố lớn hơn 2 chia hết cho n . 2 Vậy Sn n . u1 0 Bài 7. Cho dãy số un u2 18 . Chứng minh rằng nếu n là số nguyên tố và * un 2 5un 1 6un 24,n ¥ n 3 thì un chia hết cho 6n . Hướng dẫn giải * Đặt vn un 12 hay un vn 12,n ¥ . Khi đó vn 2 5vn 1 6vn . v1 12 Ta được vn v2 30 . vn 2 5vn 1 6vn Phương trình đặc trưng  2 5 6 0 có nghiệm  2   3 . n n Khi đó vn a.2 b.3 . v1 12 2a 3b 12 a 3 Ta có . v2 30 4a 9b 30 b 2 n n Suy ra vn 3.2 2.3 . n n Khi đó un vn 12 3.2 2.3 12 . n 1 n 1 Ta có un 6 2 3 2 nên un chia hết cho 6 . Mặt khác n là số nguyên tố nên theo định lý Fermat. 2n  2(mod n) 3.2n  6(mod n) hay . n n 3  3(mod n) 2.3  6(mod n) n n Từ đó un (3.2 2.3 12)  0(mod n) . Suy ra un chia hết cho n . Với n là số nguyên tố và n 3 (n,6) 1. Suy ra un chia hết cho 6n .
  13. x 1 1 Bài 8. Cho dãy số xn với . x x x 5 x 2 5x 8 16 n N * n 1 n n n n n 1 a) Chứng minh xn 5 , với mọi n 2 . n 1 b) Đặt yn . Tìm lim yn .  n k 1 xk 3 Hướng dẫn giải n 1 a) Chứng minh xn 5 , với mọi n 2 . 2 1 x2 10 5 5 . n 1 Giả sử ta có xn 5 n 2 . x x x 5 x 2 5x 8 16 x 2 5x x 2 5x 8 16 n 1 n n n n n n n n . 2 n 1 n xn 5xn 4 5xn 5.5 5 n Suy ra xn 1 5 . n 1 Vậy theo qui nạp xn 5 với n 2 . n 1 b) Đặt yn . Tìm lim yn .  n k 1 xk 3 Ta có:. 2 2 xn 1 xn 5xn 4 xn 1 2 xn 5xn 6 xn 2 xn 3 . 1 1 1 1 x 2 x 2 x 3 x 2 x 3 n 1 n n n n . 1 1 1 xn 3 xn 2 xn 1 2 n 1 n 1 1 1 1 1 1 yn   . k 1 xk 3 k 1 xk 2 xk 1 2 x1 2 xn 1 2 3 xn 1 2 1 1 1 n 1 lim yn lim (vì xn 1 5 lim 0 ). n n n 3 xn 1 2 3 xn 1 1 Vậy lim yn . n 3 u1 2 Bài 9. Cho dãy số (un ) được xác định như sau:. 3 2 . Chứng minh un 3un 1 2n 9n 9n 3,n 2 p 1 rằng với mọi số nguyên tố p thì 2014ui chia hết cho p . i 1 Hướng dẫn giải
  14. 3 3 Với mọi n 2 ta có: un n 3 un 1 (n 1) . 3 3 2 3 n 1 3 n Từ đó có: un n 3 un 1 (n 1) 3 un 2 (n 2) 3 u1 1 3 . n 3 1 3 n 3 Vậy un 3 n ,n 2 , lại có u1 2 3 1 nên un 3 n ,n 1. + Nếu p 2 : có ngay đpcm. p 1 2 p 1 3 3 3 + Nếu p là số nguyên tố lẻ: ui (3 3 3 ) 1 2 ( p 1) . i 1 p 1 p 1 1 1 3 1 3  (3p 3) i3 p 1 (3p 3) i3 p i .    2 2 i 1 2 i 1  3 Theo Định lí Fermat nhỏ, suy ra 3p 3 chia hết cho p . Mặt khác i3 p i cũng chia hết cho p 1 3 p,i 1, p 1 nên: (3p 3) i3 p i chia hết cho p . Từ đó.  i 1 p 1 p 1 3  2014 u 1007 (3p 3) i3 p i chia hết cho p .  i   i 1 i 1  Vậy bài toán được chứng minh cho mọi trường hợp. x0 20; x1 30 Bài 10. Cho dãy số xn xác định bởi . Tìm n để xn 1.xn 1 là số chính xn 2 3xn 1 xn ,n ¥ phương. Hướng dẫn giải Từ công thức truy hồi của xn ta có. n ¥ , x2 x2 3x x x2 x x 3x x2 x x n 1 n n 1 n n 1 n n n 1 n 1 n 2 n và x2 x2 3x x x x 3x x2 x2 x x n 1 n n 1 n n 1 n 1 n n n n 1 n 1 2 2 2 Suy ra x xn 2 xn x xn 1xn 1 x x0 x2 500 n 1 n 1 . x2 x2 3x x 500 n 1 n n 1 n x2 x2 3x x 500 n 1 n n 1 n 2 x x x x 500 n 1 n n 1 n Vậy xn 1xn 500 là số chính phương. Giả sử n là số thỏa mãn xn 1xn 500 là số chính phương. 2 2 Đặt xn 1xn 500 b , xn 1xn 1 a ,a,b ¥ ,a b . Ta có a2 b2 501 a b a b 1.501 3.167 . Khi đó ta tìm được a 201,b 1 thì xn 1xn 12600 n 2 . 7224 Với a 85,b 82 thì x x n . n 1 n 5 Vậy n = 2 thì xn 1.xn 1 là số chính phương.
  15. Bài 11. Bài 3. Cho phương trình x2 x 1 0 với là số nguyên dương. Gọi  là nghiệm dương của phương trình. Dãy số xn được xác định như sau x0 , xn 1  xn , n 0,1,2,3, Chứng minh rằng tồn tại vô hạn số tự nhiên n sao cho xn chia hết cho . Hướng dẫn giải Đầu tiên ta chứng minh  là số vô tỉ. Thật vậy, nếu  là số hữu tỉ thì  là số nguyên (do hệ số cao nhất của x2 là 1) và  là ước của 1. Do đó  1 suy ra 0 , trái giả thiết. Do đó  xn 1   xn 1  xn 1  1. xn  xn 1 xn 1. x x 1 1 x n x n x n x .  n 1   n 1   n 1 xn 2 1 xn 1 1 (1). Lại có   1 0 , suy ra  .   xn xn xn  xn xn xn 1 xn xn xn xn 1 1 (do (1)).    * Vậy xn 1  xn 1 1 (mod ) . Từ đó bằng quy nạp ta có với mọi k ¥ , n 2k 1, thì xn 1  xn (2k 1) (k 1) (mod ) (2). Chọn k 1 l l ¥ * , n 1 2l , từ (2) ta có. x2l  x0 l l  0 (mod ) . * Vậy x2l chia hết cho , l ¥ . . a0 a1 2004 an 10 Bài 12. Cho dãy số an xác định bởi . Chứng minh rằng là số an 2 7an 1 an 3978,n ¥ . 2014 chính phương. Hướng dẫn giải Ta có. a 10 a 10 a 10 a 7a a 3978 n 2 7. n 1 n 2 n 2 n 1 n 2014 2014 2014 an 10 v0 v1 1 Đặt vn . Ta được dãy số vn xác định bởi . 2014 vn 2 7vn 1 vn 2,n ¥ . Ta phải chứng minh vn là số chính phương. x0 1; x1 1 Thật vậy, xét dãy số (xn ) xác định bởi . xn 2 3xn 1 xn ,n ¥ . Hiển nhiên dãy số xn là dãy số nguyên.
  16. 2 2 2 2 n ¥ , xn 1 xn 3xn 1xn xn 1 xn (xn 3xn 1) xn 1 xn xn 2. và x2 x2 3x x x (x 3x ) x2 x2 x x . Ta có n 1 n n 1 n n 1 n 1 n n n n 1 n 1 . 2 2 2 xn 1 xn xn 2 xn xn 1xn 1 x1 x0 x2 1. 2 2 xn 1 xn 3xn 1xn 1,n ¥ . (2) 2 Ta sẽ chứng minh vn xn ,n ¥ (1) bằng quy nạp. Thật vậy, rõ ràng với n 0,n 1, (1) đúng. 2 Giả sử (1) đúng đến n k 1,k ¥ , tức là vn xn ,n 1,2, ,k 1. . 2 ta chứng minh (1) đúng với n = k+2, nghĩa là chứng minh vk 2 xk 2 . Thật vậy, theo công thức truy hồi của dãy số an , giả thiết quy nạp, tính chất (2) của dãy số xn , công thức truy hồi của dãy số xn , ta có. v 7v v 2 7x2 x2 2 7x2 x2 2(x2 x2 3x x ) k 2 k 1 k k 1 k k 1 k k 1 k k 1 k . 2 2 2 2 9xk 1 6xk 1xk xk (3xk 1 xk ) xk 2. Do đó vn là số chính phương. Vậy ta có điều phải chứng minh. 3 3 Bài 13. Cho dãy số (xn ) được xác định bởi xn 2013n a 8n 1,n 1,2, a là số thực a)) Tìm a sao cho dãy số có giới hạn hữu hạn. b) Tìm a sao cho dãy số (xn ) là dãy số tăng (kể từ số hạng nào đó). Hướng dẫn giải 3 3 a) Ta có xn (2a 2013)n ayn , trong đó yn 8n 1 2n . 8n3 1 (2n)3 1 0 Khi n . 3 (8n3 1)2 2n 3 8n3 1 4n2 3 (8n3 1)2 2n 3 8n3 1 4n2 2013 Do đó tồn tại giới hạn hữu hạn lim xn khi và chỉ khi a . n 2 b) Từ lý luận phần a) ta suy ra) 2013 khi a 2 2013 lim xn 0 khi a . n 2 2013 khi a 2 2013 Bởi vậy điều kiện cần để tồn tại m N * sao cho x x x là a . m m 1 m 2 2 2013 Ta đi chứng minh a là điều kiện đủ để có kết luận trên. 2
  17. 2013 Thật vậy: Với a . 2 3 3 3 3 xn 1 xn 2013(n 1) a 8(n 1) 1 2013n a 8n 1 2013 a( 3 8(n 1)3 1 3 8n3 1) 2013 2013 ( 3 8(n 1)3 1 3 8n3 1) . 2 2013 [2 ( 3 8(n 1)3 1 3 8n3 1)] 2 2013 (2 3 8n3 1 3 8(n 1)3 1) 0 2 Vì. 2 (2 3 8n3 1)3 8 12 3 8n3 1 6 3 8n3 1 8n3 1 8 12.2n 6(2n)2 8n3 1 8(1 3n 3n2 n3 ) 1 . 8(n 1)3 1 Suy ra x1 x2 x3 2013 Vậy dãy số (x ) là dãy số tăng kể từ số hạng nào đó với a và trong trường hợp đó (x ) là dãy số n 2 n tăng từ x1 .