Đề ôn tập Giải tích Lớp 12 - Chương 1 - Đề 10 (Có đáp án)
Câu 10: Cho hàm số y=f(x) có bảng xét dấu đạo hàm như sau:
Mệnh đề nào dưới đây sai?
A. Hàm số có giá trị cực đại bằng 0
B. Hàm số có ba điểm cực trị.
C. Hàm số có hai điểm cực tiểu.
D. Hàm số có giá trị cực đại bằng 3.
Mệnh đề nào dưới đây sai?
A. Hàm số có giá trị cực đại bằng 0
B. Hàm số có ba điểm cực trị.
C. Hàm số có hai điểm cực tiểu.
D. Hàm số có giá trị cực đại bằng 3.
Bạn đang xem tài liệu "Đề ôn tập Giải tích Lớp 12 - Chương 1 - Đề 10 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- de_on_tap_giai_tich_lop_12_chuong_1_de_10_co_dap_an.docx
Nội dung text: Đề ôn tập Giải tích Lớp 12 - Chương 1 - Đề 10 (Có đáp án)
- ĐỀ 10 ĐỀ ÔN TẬP CHƯƠNG I GIẢI TÍCH 12 Câu 1: Cho hàm số y x3 3m2 x2 m3 có đồ thị C . Tìm tất cả các giá trị thực của tham số m để tiếp tuyến của đồ thị C tại điểm có hoành độ x0 1 song song với đường thẳng d : y 3x. A. m 1. B. m 1. m 1 C. . D. Không có giá trị của m. m 1 Câu 2: Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y x4 2x2 3 trên0;2 là: A. M 11, m 3. B. M 5, m 2. C. M 3, m 2. D. M 11, m 2. x2 3x 2 Câu 3: Số đường tiệm cận của đồ thị hàm số y là: 4 x2 A. 4. B. 1. C. 2. D. 3. 2x 1 Câu 4: Cho hàm số y có đồ thị (C). Tìm các điểm M trên đồ thị (C) sao cho khoảng x 1 cách từ hai điểm A(2;4) và B( 4; 2) đến tiếp tuyến của (C) tại M là bằng nhau 3 5 A. M (0;1). B. M (1; ), M (2; ). 2 3 3 3 C. M (1; ). D. M (0;1);M (1; );M ( 2;3). 2 2 Câu 5: Tổng các giá trị thực của tham số m sao cho đường thẳng y x cắt đồ thị hàm số x 5 y tại hai điểm A và B sao cho AB 4 2 là x m A. 2 B. 5 C. 7 D. 9 Câu 6: Tìm tất cả các giá trị thực của tham số m để đường thẳng d : y x m cắt đồ thị hàm 2x 1 số (C): y tại hai điểm phân biệt x 2 A. 1 m 4. B. m ¡ . C. m 4. D. 1 m hoặc m 4. Câu 7: Cho hàm số y f (x) có đạo hàm f '(x) x2 1. Mệnh đề nào dưới đây đúng? A. Hàm số nghịch biến trên khoảng ( 1;1).
- B. Hàm số nghịch biến trên khoảng (1; ). C. Hàm số nghịch biến trên khoảng ( ;0). D. Hàm số đồng biến trên khoảng ( ; ). Câu 8: Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y x4 m 1 x2 m cắt trục hoành tại bốn điểm phân biệt có tổng bình phương các hoành độ bằng 8. A. m 1. B. m 1 2 2. C. m 7. D. m 3. x 1 Câu 9: Cho hàm số y có đồ thị (C). Tiếp tuyến của (C) tại giao điểm của (C) và trục x 2 hoành có phương trình là: 1 1 A. y 3x. B. y x . C. y 3x 3. D. y x 3. 3 3 x2 3x 6 Câu 10: Để đường cong (C) : y có đúng 1 đường tiệm cận đứng thì giá trị của a x2 ax a là a 0 a 1 A. . B. . C. a 1. D. a 2. a 4 a 2 1 x2 Câu 11: Cho f x x . Gọi M max f x ;m min f x , khi đó: M – m x2 4x 5 4 0;3 0;3 bằng 3 7 9 A. . B. 1. C. . D. . 5 5 5 Câu 12: Cho hàm số y 2x2 1 . Mệnh đề nào dưới đây đúng? A. Hàm số nghịch biến trên khoảng (0; ). B. Hàm số đồng biến trên khoảng ( ; 0). C. Hàm số nghịch biến trên khoảng ( 1;1). D. Hàm số đồng biến trên khoảng (0; ). 1 Câu 13: Số điểm cực đại của đồ thị hàm số f (x) x4 2x2 4 là: 4 A. 1 B. 3 C. 2 D. 0 Câu 14: Cho hàm số y f (x) có bảng biến thiên như sau
- Mệnh đề nào dưới đây sai? A. Hàm số có giá trị cực đại bằng 0 B. Hàm số có ba điểm cực trị. C. Hàm số có hai điểm cực tiểu. D. Hàm số có giá trị cực đại bằng 3. 1 Câu 15: Giá trị cực tiểu của hàm số y x3 x 1 là: 3 1 5 A. 1 B. C. D. 1 3 3 Câu 16: Cho hàm số y ax4 bx2 c , với a 0 , có bảng biến thiên như hình sau: Khẳng định nào sau đây đúng: A. a 0 và b 0 B. a 0 và b 0 C. a 0 và b 0 D. a 0 vàb 0 x2 2x Câu 17: Hàm số y đồng biến trên khoảng: x 1 A. ( ;2). B. ( ;1) và (1; ). C. ( 1; ). D. (0; ). Câu 18: Cho hàm số y f x xác định và có đạo hàm f '(x) . Đồ thị hàm số y f (x) như hình bên. Khẳng định nào sau đây đúng: A. Hàm số y f x đồng biến trên khoảng (0;1). B. Hàm số y f x đồng biến trên khoảng ( ;2). C. Hàm số y f x có 3 điểm cực trị. D. Hàm số y f x đồng biến trên khoảng ( ; 1). Câu 19: Cho hàm số y f x có đồ thị như hình bên. Tìm tất cả các giá trị thực của tham số m để phương trình f x m 2 có bốn nghiệm phân biệt.
- y -1 O 1 x A. 4 m 3 . B. 4 m 3 . C. 6 m 5 . -3 D. 6 m 5 . -4 . Câu 20: Đồ thị hàm số y x3 3x2 2 có dạng: A. B. C. D. y y y y 3 3 3 3 2 2 2 2 1 1 1 1 x x x x -3 -2 -1 1 2 3 -3 -2 -1 1 2 3 -3 -2 -1 1 2 3 -3 -2 -1 1 2 3 -1 -1 -1 -1 -2 -2 -2 -2 -3 -3 -3 -3 HẾT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 B D C D C B D D B A D D D A C A B D D C