5 Đề kiểm tra giữa học kì 2 Toán Lớp 12
Câu 4. Một sân bóng hình chữ nhật với diện tích 100m2. Người ta muốn trồng cỏ trên sân bóng theo hình một parabol bậc hai sao cho đỉnh của parabol trùng với trung điểm một cạnh của sân bóng như hình vẽ bên. Biết chi phí trồng cỏ là 300 ngàn đồng cho mỗi mét vuông. Xác định chi phí trồng cỏ cần có cho sân bóng trên?
Câu 4. Nhà ông Hải có một cái cổng hình chữ nhật, lối vào cổng có dạng parabol có kích thước như hình vẽ. Ông Hải cần trang trí bề mặt (phần gạch chéo) của cổng. Hỏi ông Hải cần bao nhiêu tiền để trang trí, biết giá thành trang trí là 1.200.000 đồng /1m2?
Bạn đang xem 20 trang mẫu của tài liệu "5 Đề kiểm tra giữa học kì 2 Toán Lớp 12", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- 5_de_kiem_tra_giua_hoc_ki_2_toan_lop_12.docx
Nội dung text: 5 Đề kiểm tra giữa học kì 2 Toán Lớp 12
- ĐỀ 1 ĐỀ KIỂM TRA GIỮA HỌC KỲ II MÔN TOÁN 12 Thời gian: 90 phút 1 Câu 1. Tất cả các nguyên hàm của hàm số y là 2x 3 1 1 A. ln(2x 3) C . B. ln 2x 3 C . C. ln 2x 3 C. D. 2ln 2x 3 C. 2 2 Câu 2. Mệnh đề nào sau đây là đúng ? x2 A. xexdx ex xex C . B. xexdx ex ex C . 2 x2 C. xexdx xex ex C . D. xexdx ex C . 2 4 4 2 f x dx 4 I f x dx Câu 3. Cho f x dx 2 , 2 . Tính 2 . 2 A. I 5.B. I 6. C. I 3. D. I 3. 1 Câu 4. Cho tích phân I x 1 x 5 dx . Mệnh đề nào dưới đây đúng? 0 0 0 1 0 A. I t5 1 t dt . B. I t 6 t5 dt . C. I t5 1 t dt . D. I t 6 t5 dt . 1 1 0 1 Câu 5. Diện tích hình mặt phẳng gạch sọc trong hình vẽ bên bằng 3 3 3 3 x x x A. 2 dx .B. 2 2 dx . C. 2 2 dx . D. 2x 2 dx . 1 1 1 1 Câu 6. Thể tích V của khối tròn xoay tạo thành do hình phẳng giới hạn bởi đồ thị hàm số y f x , trục hoành và đường thẳng x b (phần tô đậm trong hình vẽ) quay quanh trục Ox được tính theo công thức nào dưới đây?
- y (C): y = f(x) x c O b b c 2 2 A. V f x dx . B. V f x dx . c b c b 2 2 C. V f x dx . D. V f x dx . b c Câu 7. Cho phần vật thế H được giới hạn bởi hai mặt phẳng P và Q vuông góc với trục Ox tại x 0 , x 3. Cắt phần vật thể H bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ bằng x 0 x 3 ta được thiết diện là hình chữ nhật có kích thước lần lượt là x và 3 x . Thể tích phần vật thể H được tính theo công thức: 3 3 2 A. S x2 3 x dx . B. S x 3 x dx . 0 0 3 3 C. S x 3 xdx . D. x 3 x dx . 0 0 Câu 8. Môđun của số phức z 5 2i bằng A. 29 . B. 3 . C. 7 . D. 29 . Câu 9. Số phức liên hợp của số phức z 1 3i là A. 1 3i . B. 1 3i . C. 1 3i . D. 1 3i . Câu 10. Tìm các số thực x và y thỏa mãn 3x 2 2y 1 i x 1 y 5 i , với i là đơn vị ảo. 3 3 4 4 3 4 A. x , y 2 . B. x , y . C. x 1, y . D. x , y . 2 2 3 3 2 3 Câu 11. Cho số phức z 5 7i . Xác định phần thực và phần ảo của số phức z . A. Phần thực bằng 5 và phần ảo bằng 7i . B. Phần thực bằng 5 và phần ảo bằng 7 . C. Phần thực bằng 5 và phần ảo bằng 7. D. Phần thực bằng 5 và phần ảo bằng 7i . Câu 12. Điểm nào trong hình vẽ bên là điểm biểu diễn số phức z 2 i ? A. N .B. P . C. M .D. Q .
- Câu 13. Tìm phần thực của số phức z thỏa mãn 5 i z 7 17i A. 3 B. 3 C. 2 D. 2 Câu 14. Tất cả các nghiệm phức của phương trình z2 5 0 là. A. 5 .B. 5i .C. 5i . D. 5 . Câu 15. Trong không gian Oxyz , tìm tâm I và bán kính R của mặt cầu có phương trình x2 y2 z2 2x 2y 6z 7 0 . A. I 1; 1; 3 , R 3 2 . B. I 1; 1;3 , R 3 2 . C. I 1; 1; 3 , R 18. D. I 1;1; 3 , R 3. x y z Câu 16. Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng P : 1 , véc tơ nào dưới đây 2 1 3 là một véc tơ pháp tuyến của mặt phẳng P . A. n1 3;6;2 .B. n3 3;6;2 . C. n2 2;1;3 . D. n4 3;6; 2 . : x 2y z 1 0 Câu 17. Trong không gian với hệ trục tọa độ Oxyz , cho hai mặt phẳng và : 2x 4y mz 2 0 . Tìm m để và song song với nhau. A. m 1. B. m 2. C. m 2 . D. Không tồn tại m . x 1 y 2 z 2 Câu 18. Trong không gian Oxyz , đường thẳng : có một vectơ chỉ phương là 2 3 1 A. u1 (1; 2; 2) . B. u2 ( 2; 3; 1) . C. u3 ( 1;2;2) . D. u4 (2; 3; 1) . Câu 19. Trong không gian Oxyz , cho điểm A 3; 2;1 . Đường thẳng nào sau đây đi qua A ? x 3 y 2 z 1 x 3 y 2 z 1 A. . B. . 1 1 1 1 1 1 x 3 y 2 z 1 x 3 y 2 z 1 C. . D. . 4 2 1 4 2 1 Câu 20. Trong không gian Oxyz , đường thẳng đi qua A 2; 1;2 và nhận véc tơ u 1;2; 1 làm véctơ chỉ phương có phương trình chính tắc là : x 1 y 2 z 1 x 1 y 2 z 1 A. . B. . 2 1 2 2 1 2 x 2 y 1 z 2 x 2 y 1 z 2 C. D. . 1 2 1 1 2 1 sin x cos xdx Câu 21. bằng cos 2x sin2 x sin2 x cos2 x A. C . B. C . C. C . D. C . 4 2 2 2 ln x Câu 22. Họ nguyên hàm của hàm số f x là x 1 1 A. ln2 x ln x C . B. ln2 x C . C. ln2 x C . D. ln ln x C . 2 2 2 1 2 f x dx 3 g x dx 1 I x 2 f x 3g x dx Câu 23. Cho 1 và 2 . Tính 1 . 21 26 7 5 A. . B. . C. . D. . 2 2 2 2
- 5 10 f x dx=7 f x dx= 3 Câu 24. Cho hàm số f x liên tục trên ¡ và đồng thời thỏa mãn 0 ; 3 ; 5 10 f x dx=1 f x dx 3 . Tính giá trị của 0 . A. 6 B. 10 C. 8 D. 9 Câu 25. Tính diện tích hình phẳng giới hạn bởi đồ thị hai hàm số y x2 4 và y x 2? 5 8 9 A. .B. . C. . D. 9 . 7 3 2 1 Câu 26. Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường y , y 0, x 1 và x x a a 1 quay xung quanh trục Ox . 1 1 1 1 A. 1 . B. 1 . C. 1 . D. 1 . a a a a Câu 27. Cho số phức z thỏa mãn z 2z 6 2i. Điểm biểu diễn số phức z có tọa độ là A. 2; 2 .B. 2; 2 .C. 2;2 . D. 2;2 . Câu 28. Trên mặt phẳng tọa độ, tìm tập hợp điểm biểu diễn số phức z sao cho z2 là số thuần ảo. A. Hai đường thẳng y x và y x . B. Trục Ox . C. Trục Oy . D. Hai đường thẳng y x và y x , bỏ đi điểm O 0;0 . Câu 29. Điểm nào trong hình vẽ dưới đây là điểm biểu diễn của số phức z 1 i 2 i ? A. M . B. P. C. N . D. Q.
- ĐỀ 1 ĐỀ KIỂM TRA GIỮA HỌC KỲ II MÔN TOÁN 12 Thời gian: 90 phút 1 Câu 1. Tất cả các nguyên hàm của hàm số y là 2x 3 1 1 A. ln(2x 3) C . B. ln 2x 3 C . C. ln 2x 3 C. D. 2ln 2x 3 C. 2 2 Câu 2. Mệnh đề nào sau đây là đúng ? x2 A. xexdx ex xex C . B. xexdx ex ex C . 2 x2 C. xexdx xex ex C . D. xexdx ex C . 2 4 4 2 f x dx 4 I f x dx Câu 3. Cho f x dx 2 , 2 . Tính 2 . 2 A. I 5.B. I 6. C. I 3. D. I 3. 1 Câu 4. Cho tích phân I x 1 x 5 dx . Mệnh đề nào dưới đây đúng? 0 0 0 1 0 A. I t5 1 t dt . B. I t 6 t5 dt . C. I t5 1 t dt . D. I t 6 t5 dt . 1 1 0 1 Câu 5. Diện tích hình mặt phẳng gạch sọc trong hình vẽ bên bằng 3 3 3 3 x x x A. 2 dx .B. 2 2 dx . C. 2 2 dx . D. 2x 2 dx . 1 1 1 1 Câu 6. Thể tích V của khối tròn xoay tạo thành do hình phẳng giới hạn bởi đồ thị hàm số y f x , trục hoành và đường thẳng x b (phần tô đậm trong hình vẽ) quay quanh trục Ox được tính theo công thức nào dưới đây?