Các dạng bài tập Toán Lớp 12 - Số phức (Có đáp án)

Câu 31: Phát biểu nào sau đây là đúng:

A. Mọi số phức z và số phức liên hợp z của nó có bình phương bằng nhau.

B. Mọi số phức z và số phức liên hợp z của nó có căn bậc hai bằng nhau.

C. Mọi số phức z và số phức liên hợp z của nó có phần ảo bằng nhau.

D. Mọi số phức z và số phức liên hợp z của nó có mô đun bằng nhau.

docx 48 trang Minh Uyên 23/03/2023 5160
Bạn đang xem 20 trang mẫu của tài liệu "Các dạng bài tập Toán Lớp 12 - Số phức (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • docxcac_dang_bai_tap_toan_lop_12_so_phuc_co_dap_an.docx

Nội dung text: Các dạng bài tập Toán Lớp 12 - Số phức (Có đáp án)

  1. CÁC DẠNG BÀI TẬP SỐ PHỨC TỰ LUẬN VÀ TRẮC NGHIỆM I – LÝ THUYẾT CHUNG 1. Khái niệm số phức • Tập hợp số phức: C • Số phức (dạng đại số) : z a bi (a, b R , a là phần thực, b là phần ảo, i là đơn vị ảo, i2 = –1) • z là số thực phần ảo của z bằng 0 (b = 0) z là thuần ảo phần thực của z bằng 0 (a = 0) Số 0 vừa là số thực vừa là số ảo. a a ' • Hai số phức bằng nhau: a bi a’ b’i (a,b,a ',b' R) b b' Chú ý: i4k 1; i4k 1 i; i4k 2 -1; i4k 3 -i 2. Biểu diễn hình học: Số phức z = a + bi (a, b R) được biểu diễn bởi điểm M(a; b) hay bởi u (a; b) trong mp(Oxy) (mp phức) y b .M(a;b) x O a 3. Cộng và trừ số phức: • a bi a’ b’i a a’ b b’ i • a bi a’ b’i a a’ b b’ i • Số đối của z = a + bi là –z = –a – bi • u biểu diễn z, u ' biểu diễn z' thì u u ' biểu diễn z + z’ và u u ' biểu diễn z – z’. 4. Nhân hai số phức : • a bi a ' b'i aa’ – bb’ ab’ ba’ i • k(a bi) ka kbi (k R) 5. Số phức liên hợp của số phức z = a + bi là z a bi z1 z1 2 2 • z z ; z z ' z z ' ; z.z ' z.z '; ; z.z a b z2 z2 • z là số thực z z ; z là số ảo z z 6. Môđun của số phức : z = a + bi  • z a 2 b2 zz OM • z 0, z C , z 0 z 0 z z • z.z ' z . z ' • • z z ' z z ' z z ' z ' z ' 7. Chia hai số phức: a+bi aa'-bb' ab' a 'b • Chia hai số phức: i . a'+b'i a '2 b'2 a '2 b'2 1 z ' z '.z z '.z z ' • z 1 z (z 0)• z 'z 1 • w z ' wz z 2 z z 2 z.z z 8. Căn bậc hai của số phức:
  2. 2 2 2 x y a • z x yi là căn bậc hai của số phức w a bi z w 2xy b • w = 0 có đúng 1 căn bậc hai là z = 0 • w 0 có đúng hai căn bậc hai đối nhau • Hai căn bậc hai của a > 0 là a • Hai căn bậc hai của a 0) là dạng lượng giác của z = a + bi (a, b R) (z ≠ 0) r a 2 b2 a cos ( là acgumen của z, = (Ox, OM). r b sin r c) Nhân, chia số phức dưới dạng lượng giác : Nếu z = r(cos + isin ), z’ = r’(cos ’ + isin ’) thì: z.z’ = rr’[cos( + ’) + isin( + ’)] z r cos( ') isin( '). z' r ' d) Công thức Moa-vrơ : Với n là số nguyên, n 1 thì : r(cos isin )n rn (cos n isin n ) Khi r = 1, ta được : (cos isin )n (cos n isin n ) e) Căn bậc hai của số phức dưới dạng lượng giác : Các căn bậc hai của số phức z = r(cos + isin ) (r > 0) là : r cos isin và 2 2 r cos isin r cos isin . 2 2 2 2
  3. II – CÁC DẠNG BÀI TẬP DẠNG 1: SỐ PHỨC VÀ CÁC PHÉP TOÁN TRÊN SỐ PHỨC A – CÁC VÍ DỤ 3 1 Ví dụ 1: Cho số phức z = i . Tính các số phức sau: z ; z2; ( z )3; 1 + z + z2 2 2 Giải: 3 1 3 1 a) Vì z = i z = i 2 2 2 2 2 3 1 3 1 3 1 3 2 i2 i i b) Ta có z = i = = 2 2 4 4 2 2 2 2 2 3 1 3 1 2 3 1 3 ( z ) = i i i i 2 2 4 4 2 2 2 3 2 1 3 3 1 3 1 3 3 ( z ) =( z ) . z = i i i i i 2 2 2 2 4 2 4 4 3 1 1 3 3 3 1 3 Ta có: 1 + z + z2 = 1 i i i 2 2 2 2 2 2 Ví dụ 2: Tìm các số thực x, y thoả mãn: 3x + y + 5xi = 2y – 1 +(x – y)i Giải: Theo giả thiết: 3x + y + 5xi = 2y – 1 +(x – y)i (3x + y) + (5x)i = (2y – 1) +(x – y)i 1 x 3x y 2y 1 7 Giải hệ này ta được: 5x x y 4 y 7 Ví dụ 3: Tính: i105 + i23 + i20 – i34 Giải: Để tính toán bài này, ta chú ý đến định nghĩa đơn vị ảo để từ đó suy ra luỹ thừa của đơn vị ảo như sau: Ta có: i2 = -1; i3 = -i; i4 = i3.i = 1; i5 = i; i6 = -1 Bằng quy nạp dễ dàng chứng minh được: i4n = 1; i4n+1 = i; i4n+2 = -1; i4n+3 = -i;  n N* Vậy in {-1;1;-i;i},  n N. n 1 n Nếu n nguyên âm, in = (i-1)-n = i . i Như vậy theo kết quả trên, ta dễ dàng tính được: i105 + i23 + i20 – i34 = i4.26+1 + i4.5+3 + i4.5 – i4.8+2 = i – i + 1 + 1 = 2 16 8 1 i 1 i Ví dụ 4: Tính số phức sau: z = 1 i 1 i 1 i (1 i)(1 i) 2i Giải: Ta có: i 1 i 2 2 16 8 1 i 1 i 1 i i . Vậy =i16 +(-i)8 = 2 1 i 1 i 1 i Ví dụ 5: Tìm phần ảo của z biết: z 3z 2 i 3 2 i (1) Giải: Giả sử z=a+bi
  4. (1) a bi 3a 3bi 8 12i 6i2 i3 2 i 2 11i . 2 i 15 4a 2bi 4 2i 22i 11i2 20i 15 a ;b 10 . 4 Vậy phần ảo của z bằng -10 Ví dụ 6: Cho z1 3 i,z2 2 i Tính z1 z1z2 Giải: 2 2 z1 z1z2 3 i 3 i 2 i 10 10 0i z1 z1z2 10 0 10 z1 z2 3 Ví dụ 7: Cho z1 2 3i, z2 1 i . Tính z1 3z2 ; ; z1 3z2 z2 Giải: 2 2 +) z1 3z2 2 3i 3 3i 5 6i z1 3z2 5 6 61 z1 z2 3 4i 3 4i 1 i 7 i z1 z2 49 1 5 2 +) 2 z2 1 i 1 i 2 z2 4 4 2 3 2 3 3 +) z1 3z2 8 36i 54i 27i 3 3i 49 6i z1 3z2 2437 Ví dụ 8: Tìm các căn bậc hai của số phức z 5 12i Giải: Giả sử m+ni (m; n R) là căn bậc hai của z Ta có: (m ni)2 5 12i m2 2mni n2i2 5 12i m2 2mni n2 5 12i m2 n2 5(1) m2 n2 5 6 2mn 12 m (2) n 2 6 2 4 2 Thay (2) vào (1) ta có: n 5 36 n 5n n n4 5n2 36 0 n2 4;n2 9(loai) n 2 m 3 n 2 m 3 Vậy z có hai căn bậc hai là 3+2i và -3-2i Ví dụ 9: Tính số phức sau: z = (1+i)15 Giải: Ta có: (1 + i)2 = 1 + 2i – 1 = 2i (1 + i)14 = (2i)7 = 128.i7 = -128.i z = (1+i)15 = (1+i)14(1+i) = -128i (1+i) = -128 (-1 + i) = 128 – 128i. B – BÀI TẬP TRẮC NGHIỆM Câu 1: Biết rằng số phức z x iy thỏa z2 8 6i . Mệnh đề nào sau đây sai? x4 8x2 9 0 x2 y2 8 A. B. 3 xy 3 y x x 1 x 1 2 2 C. hay D. x y 2xy 8 6i y 3 y 3 Câu 2: Cho số phức z m 1 m 2 i, m R . Giá trị nào của m để z 5 m 6 A. 2 m 6 B. 6 m 2 C. 0 m 3 D. m 2
  5. CÁC DẠNG BÀI TẬP SỐ PHỨC TỰ LUẬN VÀ TRẮC NGHIỆM I – LÝ THUYẾT CHUNG 1. Khái niệm số phức • Tập hợp số phức: C • Số phức (dạng đại số) : z a bi (a, b R , a là phần thực, b là phần ảo, i là đơn vị ảo, i2 = –1) • z là số thực phần ảo của z bằng 0 (b = 0) z là thuần ảo phần thực của z bằng 0 (a = 0) Số 0 vừa là số thực vừa là số ảo. a a ' • Hai số phức bằng nhau: a bi a’ b’i (a,b,a ',b' R) b b' Chú ý: i4k 1; i4k 1 i; i4k 2 -1; i4k 3 -i 2. Biểu diễn hình học: Số phức z = a + bi (a, b R) được biểu diễn bởi điểm M(a; b) hay bởi u (a; b) trong mp(Oxy) (mp phức) y b .M(a;b) x O a 3. Cộng và trừ số phức: • a bi a’ b’i a a’ b b’ i • a bi a’ b’i a a’ b b’ i • Số đối của z = a + bi là –z = –a – bi • u biểu diễn z, u ' biểu diễn z' thì u u ' biểu diễn z + z’ và u u ' biểu diễn z – z’. 4. Nhân hai số phức : • a bi a ' b'i aa’ – bb’ ab’ ba’ i • k(a bi) ka kbi (k R) 5. Số phức liên hợp của số phức z = a + bi là z a bi z1 z1 2 2 • z z ; z z ' z z ' ; z.z ' z.z '; ; z.z a b z2 z2 • z là số thực z z ; z là số ảo z z 6. Môđun của số phức : z = a + bi  • z a 2 b2 zz OM • z 0, z C , z 0 z 0 z z • z.z ' z . z ' • • z z ' z z ' z z ' z ' z ' 7. Chia hai số phức: a+bi aa'-bb' ab' a 'b • Chia hai số phức: i . a'+b'i a '2 b'2 a '2 b'2 1 z ' z '.z z '.z z ' • z 1 z (z 0)• z 'z 1 • w z ' wz z 2 z z 2 z.z z 8. Căn bậc hai của số phức: